Backlund transformations and the Atiyah-Ward ansatz for non-commutative anti-self-dual Yang-Mills equations

被引:12
|
作者
Gilson, Claire R. [2 ]
Hamanaka, Masashi [1 ]
Nimmo, Jonathan J. C. [2 ]
机构
[1] Nagoya Univ, Dept Math, Nagoya, Aichi 4648602, Japan
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
关键词
non-commutative integrable systems; anti-self-dual Yang-Mills equation; quasi-determinant solutions; Atiyah-Ward ansatz; Penrose-Ward transformation; QUASIDETERMINANT SOLUTIONS; DARBOUX TRANSFORMATIONS; INTEGRABLE SYSTEMS; KP HIERARCHY; FIELD-THEORY; INSTANTONS; DETERMINANTS; CONSTRUCTION;
D O I
10.1098/rspa.2008.0515
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present Backlund transformations for the non-commutative anti-self-dual Yang Mills equation where the gauge group is G = GL(2), and use it to generate a series of exact solutions from a simple seed solution. The solutions generated by this approach are represented in terms of quasi-determinants. We also explain the origins of all the ingredients of the Backlund transformations within the framework of non-commutative twistor theory. In particular, we show that the generated solutions belong to a non-commutative version of the Atiyah-Ward ansatz.
引用
收藏
页码:2613 / 2632
页数:20
相关论文
共 50 条