Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg-Landau equations

被引:6
|
作者
Gao, Peng [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
关键词
almost periodic solutions; almost automorphic solutions; bounded solutions; linearly coupled complex cubic-quintic Ginzburg-Landau equations; periodic solutions; quasi-periodic solutions; ALMOST-PERIODIC SOLUTIONS; NONLINEAR-WAVE-EQUATIONS; FUNCTIONAL-DIFFERENTIAL EQUATIONS; DISSIPATED HYBRID SYSTEM; SIMPLE GLOBAL ATTRACTOR; NAVIER-STOKES SYSTEM; PASSIVE-MODE LOCKING; AUTOMORPHIC SOLUTIONS; SCHRODINGER-EQUATION; AVERAGING PRINCIPLE;
D O I
10.1002/mma.4778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will establish the bounded solutions, periodic solutions, quasiperiodic solutions, almost periodic solutions, and almost automorphic solutions for linearly coupled complex cubic-quintic Ginzburg-Landau equations, under suitable conditions. The main difficulty is the nonlinear terms in the equations that are not Lipschitz-continuity, traditional methods cannot deal with the difficulty in our problem. We overcome this difficulty by the Galerkin approach, energy estimate method, and refined inequality technique.
引用
收藏
页码:2769 / 2794
页数:26
相关论文
共 50 条
  • [21] Bifurcation to traveling waves in the cubic-quintic complex Ginzburg-Landau equation
    Park, Jungho
    Strzelecki, Philip
    ANALYSIS AND APPLICATIONS, 2015, 13 (04) : 395 - 411
  • [22] Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation
    Maruno, K
    Ankiewicz, A
    Akhmediev, N
    PHYSICS LETTERS A, 2005, 347 (4-6) : 231 - 240
  • [23] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [24] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [25] Influence of the higher-order effects on the solutions of the complex cubic-quintic Ginzburg-Landau equation
    Uzunov, Ivan M.
    Nikolov, Svetoslav G.
    JOURNAL OF MODERN OPTICS, 2020, 67 (07) : 606 - 618
  • [26] Exact solutions of discrete complex cubic-quintic Ginzburg-Landau equation with non-local quintic term
    Dai, Chaoqing
    Zhang, Jiefang
    OPTICS COMMUNICATIONS, 2006, 263 (02) : 309 - 316
  • [27] Exact solutions to the fractional complex Ginzburg-Landau equation with cubic-quintic and Kerr law nonlinearities
    Yang, Liu
    Gao, Ben
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [28] Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation
    Murali, R.
    Porsezian, K.
    Kofane, T. C.
    Mohamadou, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [29] Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation
    Shtyrina, Olga, V
    Yarutkina, Irina A.
    Skidin, Anton S.
    Podivilov, Evgeny, V
    Fedorukt, Mikhail P.
    OPTICS EXPRESS, 2019, 27 (05) : 6711 - 6718
  • [30] Exact Solutions for 2D cubic-quintic Ginzburg-Landau equation
    Shi, Ye-qiong
    Dai, Zheng-de
    Han, Song
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96