Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg-Landau equations

被引:6
|
作者
Gao, Peng [1 ,2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
关键词
almost periodic solutions; almost automorphic solutions; bounded solutions; linearly coupled complex cubic-quintic Ginzburg-Landau equations; periodic solutions; quasi-periodic solutions; ALMOST-PERIODIC SOLUTIONS; NONLINEAR-WAVE-EQUATIONS; FUNCTIONAL-DIFFERENTIAL EQUATIONS; DISSIPATED HYBRID SYSTEM; SIMPLE GLOBAL ATTRACTOR; NAVIER-STOKES SYSTEM; PASSIVE-MODE LOCKING; AUTOMORPHIC SOLUTIONS; SCHRODINGER-EQUATION; AVERAGING PRINCIPLE;
D O I
10.1002/mma.4778
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will establish the bounded solutions, periodic solutions, quasiperiodic solutions, almost periodic solutions, and almost automorphic solutions for linearly coupled complex cubic-quintic Ginzburg-Landau equations, under suitable conditions. The main difficulty is the nonlinear terms in the equations that are not Lipschitz-continuity, traditional methods cannot deal with the difficulty in our problem. We overcome this difficulty by the Galerkin approach, energy estimate method, and refined inequality technique.
引用
收藏
页码:2769 / 2794
页数:26
相关论文
共 50 条