Active Fuzzy Weighting Ensemble for Dealing with Concept Drift

被引:8
|
作者
Dong, Fan [1 ,2 ]
Lu, Jie [2 ]
Zhang, Guangquan [2 ]
Li, Kan [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, 5 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Univ Technol Sydney, Ctr Artificial Intelligence, 15 Broadway, Ultimo, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
concept drift; change detection; ensemble learning; data streams;
D O I
10.2991/ijcis.11.1.33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The concept drift problem is a pervasive phenomenon in real-world data stream applications. It makes well-trained static learning models lose accuracy and become outdated as time goes by. The existence of different types of concept drift makes it more difficult for learning algorithms to track. This paper proposes a novel adaptive ensemble algorithm, the Active Fuzzy Weighting Ensemble, to handle data streams involving concept drift. During the processing of data instances in the data streams, our algorithm first identifies whether or not a drift occurs. Once a drift is confirmed, it uses data instances accumulated by the drift detection method to create a new base classifier. Then, it applies fuzzy instance weighting and a dynamic voting strategy to organize all the existing base classifiers to construct an ensemble learning model. Experimental evaluations on seven datasets show that our proposed algorithm can shorten the recovery time of accuracy drop when concept drift occurs, adapt to different types of concept drift, and obtain better performance with less computation costs than the other adaptive ensembles.
引用
收藏
页码:438 / 450
页数:13
相关论文
共 50 条
  • [31] Concept Drift and Covariate Shift Detection Ensemble with Lagged Labels
    Xu, Yiming
    Klabjan, Diego
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 1504 - 1513
  • [32] A Novel Online Ensemble Approach for Concept Drift in Data Streams
    Sidhu, Parneeta
    Bhatia, M. P. S.
    Bindal, Aditya
    2013 IEEE SECOND INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2013, : 550 - 555
  • [33] EOCD: An ensemble optimization approach for concept drift applications q
    Feitosa Neto, Antonino
    Canuto, Anne M. P.
    INFORMATION SCIENCES, 2021, 561 : 81 - 100
  • [34] An ensemble method for data stream classification in the presence of concept drift
    Omid Abbaszadeh
    Ali Amiri
    Ali Reza Khanteymoori
    Frontiers of Information Technology & Electronic Engineering, 2015, 16 : 1059 - 1068
  • [35] Diversity in Ensemble Model for Classification of Data Streams with Concept Drift
    Kolarik, Michal
    Sarnovsky, Martin
    Paralic, Jan
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 355 - 359
  • [36] The Impact of Diversity on Online Ensemble Learning in the Presence of Concept Drift
    Minku, Leandro L.
    White, Allan P.
    Yao, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (05) : 730 - 742
  • [37] A SURVEY OF ENSEMBLE CLASSIFICATION OVER CONCEPT DRIFT DATA STREAMS
    Du, Shiyu
    Han, Meng
    Shen, Mingyao
    Zhang, Chunyan
    Sun, Rui
    Gao, Tianji
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (07) : 1567 - 1579
  • [38] ENSEMBLE OF SIMPLE SPIKING NEURAL NETWORKS AS A CONCEPT DRIFT DETECTOR
    Bodyanskiy, Ye., V
    Savenkov, D., V
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2024, (04) : 85 - 91
  • [39] An ensemble method for data stream classification in the presence of concept drift
    Omid ABBASZADEH
    Ali AMIRI
    Ali Reza KHANTEYMOORI
    FrontiersofInformationTechnology&ElectronicEngineering, 2015, 16 (12) : 1059 - 1068
  • [40] Dynamical Targeted Ensemble Learning for Streaming Data With Concept Drift
    Guo, Husheng
    Zhang, Yang
    Wang, Wenjian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8023 - 8036