Weighted feature selection via discriminative sparse multi-view learning

被引:18
|
作者
Zhong, Jing [1 ]
Wang, Nan [2 ]
Lin, Qiang [2 ]
Zhong, Ping [2 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Supervised structured sparsity-inducing; feature selection; Multi-view; Weighted loss; Separable penalty strategy; UNSUPERVISED FEATURE-SELECTION; FILTER METHOD; ALGORITHM; ROBUST; IMAGE; LLE;
D O I
10.1016/j.knosys.2019.04.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The matrix-based structured sparsity-inducing multi-view feature selection has received much attention because it can select the relevant features through the information-rich multi-view data instead of the single-view data. In this paper, a novel supervised sparse multi-view feature selection model is proposed based on the separable weighted loss term and the discriminative regularization terms. The proposed model adopts the separable strategy to enforce the weighted penalty for each view instead of using the concatenated feature vectors to calculate the penalty. Therefore, the proposed model is established by considering both the complementarity of multiple views and the specificity of each view. The derived model can be split into several small-scale problems in the process of optimization, and be solved efficiently via an iterative algorithm with low complexity. Furthermore, the convergence of the proposed iterative algorithm is investigated from both theoretical and experimental aspects. The extensive experiments compared with several state-of-the-art matrix-based feature selection methods on the widely used multi-view datasets show the effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 148
页数:17
相关论文
共 50 条
  • [11] Low-rank constrained weighted discriminative regression for multi-view feature learning
    Zhang, Chao
    Li, Huaxiong
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2021, 6 (04) : 471 - 479
  • [12] Multi-View Multi-Label Learning With Sparse Feature Selection for Image Annotation
    Zhang, Yongshan
    Wu, Jia
    Cai, Zhihua
    Yu, Philip S.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2844 - 2857
  • [13] Weighted Multi-view Clustering with Feature. Selection
    Xu, Yu-Meng
    Wang, Chang-Dong
    Lai, Jian-Huang
    PATTERN RECOGNITION, 2016, 53 : 25 - 35
  • [14] A Novel Discriminative Weighted Pooling Feature for Multi-view Face Detection
    Shi, Shiwei
    Shen, Jifeng
    Zuo, Xin
    Yang, Wankou
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 437 - 448
  • [15] Multi-view feature selection via Nonnegative Structured Graph Learning
    Bai, Xiangpin
    Zhu, Lei
    Liang, Cheng
    Li, Jingjing
    Nie, Xiushan
    Chang, Xiaojun
    NEUROCOMPUTING, 2020, 387 : 110 - 122
  • [16] Discriminative Multi-View Subspace Feature Learning for Action Recognition
    Sheng, Biyun
    Li, Jun
    Xiao, Fu
    Li, Qun
    Yang, Wankou
    Han, Junwei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (12) : 4591 - 4600
  • [17] Structural regularization based discriminative multi-view unsupervised feature selection
    Zhou, Shixuan
    Song, Peng
    Yu, Yanwei
    Zheng, Wenming
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [18] Robust Re-Weighted Multi-View Feature Selection
    Xue, Yiming
    Wang, Nan
    Yan, Niu
    Zhong, Ping
    Niu, Shaozhang
    Song, Yuntao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 741 - 756
  • [19] Supervised multi-view classification via the sparse learning joint the weighted elastic loss
    Lin, Qiang
    Wang, Zhi
    Chen, Yingyi
    Zhong, Ping
    SIGNAL PROCESSING, 2022, 191
  • [20] Kappa Based Weighted Multi-View Clustering with Feature Selection
    Zhu, Changming
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON COMPUTING AND PATTERN RECOGNITION (ICCPR 2018), 2018, : 50 - 54