Development of a 50 MHz Linear Array for Endoscopic Imaging

被引:0
|
作者
Roa, Carlos-Felipe [1 ,2 ]
Caminiti, Jacqueline [2 ]
Yin, Jianhua [2 ]
Boyes, Aaron [2 ]
Cherin, Emmanuel [2 ]
Singh, Nidhi [1 ,2 ]
Foster, F. Stuart [1 ,2 ]
Demore, Christine E. M. [1 ,2 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Sunnybrook Res Inst, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ultrasound imaging; high frequency; piezoelectric transducers; linear arrays; laser micromachining; miniaturization; ULTRASOUND;
D O I
10.1109/IUS54386.2022.9957151
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Endoscopic micro-ultrasound can potentially improve imaging of diseased tissue structure and function if the probe can be positioned near the tissue of interest. We previously reported the fabrication of miniaturized linear arrays using thin, high-density flexible printed circuit boards (FPCBs) connected to array elements with laser patterned deposited metals. Here we extend previous work to limit the area used for electrical connection to array elements and place element signal electrodes on the back surface of the array so the ground electrode can be at the front face and we use extended electroplated signal electrodes to create bond-pads at the edges to achieve an endoscopic form factor. We demonstrate fabrication with a forward-viewing, 50 MHz, 64-element linear array that fits within a 3-mm-diameter lumen. The array was 2.5 mm (azimuth) by 1.6 mm (elevation), had a mean resonant frequency of 48.2 MHz and a mean kt of 0.41. Laser Doppler vibrometry measurements allow further investigation of the device performance. Phantom images are shown to demonstrate array capability.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] The development of a 1.25 MHz 1024-channel sparse array for human transcranial imaging: in vitro characterization
    McCall, J. R.
    Jones, R. M.
    Santibanez, F.
    Latham, K.
    Zou, J.
    Dayton, P. A.
    Pinton, G. F.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [32] Development of a 64 channel ultrasonic high frequency linear array imaging system
    Hu, ChangHong
    Zhang, Lequan
    Cannata, Jonathan M.
    Yen, Jesse
    Shung, K. Kirk
    ULTRASONICS, 2011, 51 (08) : 953 - 959
  • [33] Design of 15 MHz Concave Array Transducers for Ophthalmic Imaging
    Cha, Jung Hyui
    Song, Tai-Kyong
    Chang, Jin Ho
    2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2011, : 2333 - 2336
  • [34] 40-MHz annular array imaging of mouse embryos
    Aristizabal, Orlando
    Ketterling, Jeffrey A.
    Turnbull, Daniel H.
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2006, 32 (11): : 1631 - 1637
  • [35] Development of a 2.25 MHz flexible array ultrasonic transducer
    de Oliveira T.F.
    Pai C.N.
    Matuda M.Y.
    Adamowski J.C.
    Buiochi F.
    Research on Biomedical Engineering, 2019, 35 (01) : 27 - 37
  • [36] A 50-MHz CMUT Probe for Medical Ultrasound Imaging
    Zhuang, Steve
    Zhao, Danhua
    Chen, Lei
    Zhai, Liang
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [37] Development of a 2450 MHz, 50 kW CW Klystron
    Motta, Claudio
    Lopes, Daniel
    Takahashi, Jiro
    2018 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2018, : 245 - 246
  • [38] A 50 MHZ ULTRASONIC-IMAGING SYSTEM FOR DERMATOLOGICAL APPLICATION
    HOESS, A
    ERMERT, H
    ELGAMMAL, S
    ALTMEYER, P
    IEEE 1989 ULTRASONICS SYMPOSIUM : PROCEEDINGS, VOLS 1 AND 2, 1989, : 849 - 852
  • [39] Comparison of 25 MHz and 50 MHz ultrasound biomicroscopy for imaging of the lens and its related diseases
    Shi, Ming-Yu
    Han, Xiao
    Zhang, Jin-Song
    Yan, Qi-Chang
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2018, 11 (07) : 1152 - 1157
  • [40] Lead-free high-frequency linear-array transducer (30 MHz) for in vivo skin imaging
    Bantignies, C.
    Filoux, E.
    Mauchamp, P.
    Dufait, R.
    Thi, M. Pham
    Rouffaud, R.
    Gregoire, J. M.
    Levassort, F.
    2013 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2013, : 777 - 780