An efficient method for parametric uncertainty analysis of numerical geophysical models

被引:234
|
作者
Tatang, MA
Pan, WW
Prinn, RG
McRae, GJ
机构
[1] MIT, DEPT CHEM ENGN, CAMBRIDGE, MA 02139 USA
[2] LAWRENCE LIVERMORE NATL LAB, DIV ATMOSPHER SCI, LIVERMORE, CA 94550 USA
[3] MIT, CTR GLOBAL CHANGE SCI, CAMBRIDGE, MA 02139 USA
关键词
D O I
10.1029/97JD01654
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A new method for parametric uncertainty analysis of numerical geophysical models is presented. It approximates model response surfaces, which are functions of model input parameters, using orthogonal polynomials, whose weighting functions are the probabilistic density functions (PDFs) of the input uncertain parameters. This approach has been applied to the uncertainty analysis of an analytical model of the direct radiative forcing by anthropogenic sulfate aerosols which has nine uncertain parameters. This method is shown to generate PDFs of the radiative forcing which are very similar to the exact analytical PDF. Compared with the Monte Carlo method for this problem, the new method is a factor of 25 to 60 times faster, depending on the error tolerance, and exhibits an exponential decrease of error with increasing order of the approximation.
引用
收藏
页码:21925 / 21932
页数:8
相关论文
共 50 条
  • [31] Parametric uncertainty in dynamic models of civil structures
    Moreno, Claudia P.
    Thomson, Peter
    [J]. INGENIERIA Y COMPETITIVIDAD, 2010, 12 (01): : 111 - 125
  • [32] Encapsulation of parametric uncertainty statistics by various predictive machine learning models: MLUE method
    Shrestha, Durga L.
    Kayastha, Nagendra
    Solomatine, Dimitri
    Price, Roland
    [J]. JOURNAL OF HYDROINFORMATICS, 2014, 16 (01) : 95 - 113
  • [33] A comparison of models for uncertainty analysis by the finite element method
    de Lima, BSLP
    Ebecken, NFF
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2000, 34 (02) : 211 - 232
  • [34] Parametric Study of Roofing Thermal Analysis Using Numerical Method
    Ashhar, Muhamad Zahin Mohd
    Haw, Lim Chin
    Loo, Ivan
    [J]. JURNAL KEJURUTERAAN, 2020, 32 (01): : 67 - 78
  • [35] PARAMETRIC METHOD OF NUMERICAL INTEGRATION
    RAKITSKI.YV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1972, 207 (03): : 544 - &
  • [36] Efficient Numerical Models for Electro-Mechanical Analysis
    Abdelhakim, Lotfi
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [37] An accurate and efficient numerical method for solving linear peridynamic models
    Zhao, Wei
    Hon, Y. C.
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 74 : 113 - 131
  • [38] Comparative Analysis of the Structures and Outcomes of Geophysical Flow Models and Modeling Assumptions Using Uncertainty Quantification
    Patra, Abani
    Bevilacqua, Andrea
    Akhavan-Safaei, Ali
    Pitman, E. Bruce
    Bursik, Marcus
    Hyman, David
    [J]. FRONTIERS IN EARTH SCIENCE, 2020, 8
  • [39] Reliability analysis of vibro-acoustic systems with combined parametric and non-parametric probabilistic uncertainty models
    Cicirello, A.
    [J]. PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 1705 - 1719
  • [40] Efficient treatment of uncertainty in numerical optimization
    Galambos, JD
    Holmes, JA
    [J]. RISK ANALYSIS, 1997, 17 (01) : 93 - 96