Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping

被引:45
|
作者
Franklin, SE
Peddle, DR
Dechka, JA
Stenhouse, GB
机构
[1] Univ Calgary, Dept Geog, Calgary, AB T2N 1N4, Canada
[2] Univ Lethbridge, Dept Geog, Lethbridge, AB T1K 3M4, Canada
[3] GeoAnalyt Inc, Calgary, AB T2P 3J4, Canada
[4] Foothills Model Forest, Hinton, AB T7V 1X6, Canada
关键词
D O I
10.1080/01431160110113971
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Multisource data consisting of satellite imagery, topographic descriptors derived from DEMs, and GIS inventory information have been used with a detailed, field-based landcover classification scheme to support a quantitative analysis of the spatial distribution and configuration of grizzly bear (Ursus arctos horribilis) habitat within the Alberta Yellowhead Ecosystem study area. The map is needed to determine if bear movement and habitat use patterns are affected by changing landscape conditions and human activities. We compared a multisource Evidential Reasoning (ER) classification algorithm, capable of handling this large and diverse data set, to a more conventional maximum likelihood decision rule which could only use a subset of the available data. The ER classifier provided an acceptable level of accuracy (ranging to 85% over 21 habitat classes) for a level 3 product, compared to 71% using a maximum likelihood classifier.
引用
收藏
页码:4633 / 4652
页数:20
相关论文
共 24 条
  • [21] Multi-source Remote Sensing data fusion using fuzzy self-organization mapping network and modified Dempster-Shafer Evidential reasoning method to classification
    Liu, CP
    Kong, L
    Shen, PH
    Xia, DS
    DATA MINING AND APPLICATIONS, 2001, 4556 : 71 - 79
  • [22] Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios
    Metternicht, GI
    ECOLOGICAL MODELLING, 2003, 168 (03) : 371 - 389
  • [23] Comparisons of random forest and stochastic gradient treeboost algorithms for mapping soil electrical conductivity with multiple subsets using Landsat OLI and DEM/GIS-based data at a type oasis in Xinjiang, China
    Wei, Yang
    Ding, Jianli
    Yang, Shengtian
    Yang, Xiaodong
    Wang, Fei
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 158 - 181
  • [24] Automated mapping of regolith units with support vector machine and artificial neural network using data from Landsat-8 OLI, ALOS PALSAR DEM, and Sentinel-1A radar images: the case of the Sissingué Gold Project, Northern Côte d'Ivoire
    Diaby, H. A.
    Kouame, F.
    Saley, B.
    Ansah, K. O.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (22) : 7126 - 7155