Classical and quantum dynamics in an inverse square potential

被引:5
|
作者
Guillaumin-Espana, Elisa [1 ]
Nunez-Yepez, H. N. [2 ]
Salas-Brito, A. L. [3 ]
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Ciencias Basicas, Lab Sistemas Dinam, Unidad Azcapotzalco, Azcapotzalco 02200, DF, Mexico
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Unidad Iztapalapa, Iztapalapa 09340, DF, Mexico
[3] Univ Nacl Autonoma Mexico, ICN, Mexico City 04510, DF, Mexico
关键词
CONFORMAL STRUCTURE; CHARGED-PARTICLE; HYDROGEN-ATOM; ENERGY-LEVELS; RENORMALIZATION; CAPTURE; MOMENT; STATES;
D O I
10.1063/1.4899083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrodinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete "fall-to-the-center" with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) x SO(2, 1) corroborating previously obtained results. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条