Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials

被引:30
|
作者
Aptekarev, AI
Marcellan, F
Rocha, IA
机构
[1] UNIV CARLOS III MADRID,DEPT MATEMAT,LEGANES 28911,MADRID,SPAIN
[2] UNIV POLITECN MADRID,DEPT MATEMAT APLICADA,EUIT TELECOMMUN,MADRID 28031,SPAIN
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1006/jath.1996.3074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Hermite-Pade polynomials in the case where the multiple orthogonality condition is related to semiclassical functionals. The polynomials, introduced in such a way, are a generalization of classical orthogonal polynomials (Jacobi, Laguerre, Hermite, and Bessel polynomials). They satisfy a Rodrigues type formula and an (s + 2)-order differential equation, where s is the class of the semiclassical functional. A special case of polynomials, multiple orthogonal with respect to the semiclassical weight function w(x) = x(alpha 0)(x - a)(alpha 1) e(7/x) (a combination of the classical weights of Jacobi and Bessel), is analyzed in order to obtain the strong (Szego type) asymptotics and the zero distribution. (C) 1997 Academic Press.
引用
下载
收藏
页码:117 / 146
页数:30
相关论文
共 50 条