Modified Shockley-Queisser Limit for Quantum Dot Solar Cells

被引:0
|
作者
Li, Tian [1 ]
Dagenais, Mario [1 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
来源
2015 IEEE 42ND PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC) | 2015年
关键词
Quantum dot solar cell; Shockley-Queisser limit; Urbach tail;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We discuss the fundamental limits affecting the conversion efficiency of quantum dot solar cells. We demonstrate using a modified detailed balance analysis that the existence of an extended tailing density of states fundamentally enhance the dark saturation current density and lead to a degradation of the open circuit voltage. We predict how the open circuit voltage (V-oc) changes with the tail width and find agreement with the general trend observed experimentally. In practice, the existence of non-radiative recombination would further reduce V-oc.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Prospects for high-performance thermophotovoltaic conversion efficiencies exceeding the Shockley-Queisser limit
    Zhou, Zhiguang
    Chen, Qingshuang
    Bermel, Peter
    ENERGY CONVERSION AND MANAGEMENT, 2015, 97 : 63 - 69
  • [42] Exceeding the solar cell Shockley-Queisser limit via thermal up-conversion of low-energy photons
    Boriskina, Svetlana V.
    Chen, Gang
    OPTICS COMMUNICATIONS, 2014, 314 : 71 - 78
  • [43] Si/Si1-xGex Nanopillar Superlattice Solar Cell: A Novel Nanostructured Solar Cell for Overcoming the Shockley-Queisser Limit
    Watanabe, K.
    Tsuchiya, R.
    Oda, K.
    Yamamoto, J.
    Hattori, T.
    Matsumura, M.
    Kudo, M.
    Torii, K.
    2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,
  • [44] Single Bandgap Solar Converters Unbounded By The Shockley Queisser Limit
    Segev, Gideon
    Rosenwaks, Yossi
    Kribus, Abraham
    9TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-9), 2013, 1556 : 53 - 56
  • [45] Approaching the Shockley-Queisser limit for fill factors in lead-tin mixed perovskite photovoltaics
    Jayawardena, K. D. G. I.
    Bandara, R. M. I.
    Monti, M.
    Butler-Caddle, E.
    Pichler, T.
    Shiozawa, H.
    Wang, Z.
    Jenatsch, S.
    Hinder, S. J.
    Masteghin, M. G.
    Patel, M.
    Thirimanne, H. M.
    Zhang, W.
    Sporea, R. A.
    Lloyd-Hughes, J.
    Silva, S. R. P.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) : 693 - 705
  • [46] Direct visualization of hot-carrier transport in hybrid perovskites to overcome the Shockley-Queisser limit
    Snaider, Jordan
    Huang, Libai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [47] AgSbSe2 nanoparticles: A solar absorber material with an optimal Shockley-Queisser band gap
    Boon-on, Patsorn
    Chen, Po-Han
    Lee, Ming-Way
    MATERIALS LETTERS, 2022, 309
  • [48] "Thin Silicon Solar Cells: A Path to 35% Shockley-Queisser Limits", a DOE funded FPACE II project
    Ding, L.
    Boccard, M.
    Williams, J.
    Jeffries, A.
    Gangam, S.
    Ghosh, K.
    Honsberg, C.
    Bowden, S.
    Holman, Z.
    Atwater, H.
    Buonassisi, T.
    Bremner, S.
    Green, M.
    Ballif, C.
    Bertoni, M.
    2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2014, : 2467 - 2470
  • [49] The Shockley-Queisser paper - A notable example of a scientific sleeping beauty
    Marx, Werner
    ANNALEN DER PHYSIK, 2014, 526 (5-6) : A41 - A45
  • [50] Guide for the perplexed to the Shockley–Queisser model for solar cells
    Jean-Francois Guillemoles
    Thomas Kirchartz
    David Cahen
    Uwe Rau
    Nature Photonics, 2019, 13 : 501 - 505