Approximate Conservation Laws for an Integrable Boussinesq System

被引:2
|
作者
Ali, A. [1 ]
Juliussen, B. -S. [2 ]
Kalisch, H. [2 ]
机构
[1] Nansen Environm & Remote Sensing Ctr, N-5006 Bergen, Norway
[2] Univ Bergen, Dept Math, Postbox 7800, N-5020 Bergen, Norway
关键词
Mechanical balance laws; Long wave equations; Water waves; Hamiltonian models; NONLINEAR DISPERSIVE MEDIA; LONG-WAVE APPROXIMATIONS; WATER-WAVES; EQUATIONS; ENERGY; MODEL; DERIVATION;
D O I
10.1051/mmnp/201712101
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The so-called Kaup-Boussinesq system is a model for long waves propagating at the surface of a perfect fluid. In this work, a derivation of approximate local conservation equations associated to the Kaup-Boussinesq system is given. The derivation of the approximate balance laws is based on reconstruction of the velocity field and the pressure in the fluid column below the free surface, and yields expressions for mass, momentum and energy densities and the corresponding fluxes. It is shown that the total energy found with this method is equal to the Hamiltonian functional featuring in the work of Craig and Groves [10]. For the numerical approximation of solutions to the Kaup-Boussinesq system, a filtered spectral method is put forward and shown to be stable when coupled with a convergent time -stepping scheme. The spectral method is used to confirm the exact conservation of the total momentum and energy.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] Microscopic conservation laws for integrable lattice models
    Benjamin Harrop-Griffiths
    Rowan Killip
    Monica Vişan
    Monatshefte für Mathematik, 2021, 196 : 477 - 504
  • [22] Microscopic conservation laws for integrable lattice models
    Harrop-Griffiths, Benjamin
    Killip, Rowan
    Visan, Monica
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (03): : 477 - 504
  • [23] Low regularity conservation laws for integrable PDE
    Rowan Killip
    Monica Vişan
    Xiaoyi Zhang
    Geometric and Functional Analysis, 2018, 28 : 1062 - 1090
  • [24] Low regularity conservation laws for integrable PDE
    Killip, Rowan
    Visan, Monica
    Zhang, Xiaoyi
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (04) : 1062 - 1090
  • [25] Multidimensional conservation laws and integrable systems II
    Makridin, Zakhar, V
    Pavlov, Maxim, V
    STUDIES IN APPLIED MATHEMATICS, 2022, 148 (02) : 813 - 824
  • [26] Approximate conservation laws in the KdV equation
    Israwi, Samer
    Kalisch, Henrik
    PHYSICS LETTERS A, 2019, 383 (09) : 854 - 858
  • [27] Direct approach to approximate conservation laws
    Gorgone, Matteo
    Inferrera, Guglielmo
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (05):
  • [28] Approximate spacetime symmetries and conservation laws
    Harte, Abraham I.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (20)
  • [29] Approximate symmetries and conservation laws with applications
    Kara, AH
    Mahomed, FM
    Ünal, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (09) : 2389 - 2399
  • [30] Direct approach to approximate conservation laws
    Matteo Gorgone
    Guglielmo Inferrera
    The European Physical Journal Plus, 138