Approximate Conservation Laws for an Integrable Boussinesq System

被引:2
|
作者
Ali, A. [1 ]
Juliussen, B. -S. [2 ]
Kalisch, H. [2 ]
机构
[1] Nansen Environm & Remote Sensing Ctr, N-5006 Bergen, Norway
[2] Univ Bergen, Dept Math, Postbox 7800, N-5020 Bergen, Norway
关键词
Mechanical balance laws; Long wave equations; Water waves; Hamiltonian models; NONLINEAR DISPERSIVE MEDIA; LONG-WAVE APPROXIMATIONS; WATER-WAVES; EQUATIONS; ENERGY; MODEL; DERIVATION;
D O I
10.1051/mmnp/201712101
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The so-called Kaup-Boussinesq system is a model for long waves propagating at the surface of a perfect fluid. In this work, a derivation of approximate local conservation equations associated to the Kaup-Boussinesq system is given. The derivation of the approximate balance laws is based on reconstruction of the velocity field and the pressure in the fluid column below the free surface, and yields expressions for mass, momentum and energy densities and the corresponding fluxes. It is shown that the total energy found with this method is equal to the Hamiltonian functional featuring in the work of Craig and Groves [10]. For the numerical approximation of solutions to the Kaup-Boussinesq system, a filtered spectral method is put forward and shown to be stable when coupled with a convergent time -stepping scheme. The spectral method is used to confirm the exact conservation of the total momentum and energy.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Approximate conservation laws in perturbed integrable lattice models
    Mierzejewski, Marcin
    Prosen, Tomaz
    Prelovsek, Peter
    PHYSICAL REVIEW B, 2015, 92 (19)
  • [2] A COMPARISON OF CONSERVATION LAWS OF THE BOUSSINESQ SYSTEM
    Saberi, Elaheh
    Hejazi, S. Reza
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 173 - 200
  • [3] On integrable conservation laws
    Arsie, Alessandro
    Lorenzoni, Paolo
    Moro, Antonio
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2173):
  • [4] Solutions and Conservation Laws for a Kaup-Boussinesq System
    Motsepa, Tanki
    Abudiab, Mufid
    Khalique, Chaudry Masood
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [5] Conservation Laws for a Variable Coefficient Variant Boussinesq System
    Muatjetjeja, Ben
    Khalique, Chaudry Masood
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] Invariant analysis, approximate solutions, and conservation laws for the time fractional higher order Boussinesq-Burgers system
    Rahioui, Mohamed
    El Kinani, El Hassan
    Ouhadan, Abdelaziz
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 9137 - 9156
  • [7] Conservation laws for third-order variant Boussinesq system
    Naz, R.
    Mahomed, F. M.
    Hayat, T.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (08) : 883 - 886
  • [8] Integrable viscous conservation laws
    Arsie, Alessandro
    Lorenzoni, Paolo
    Moro, Antonio
    NONLINEARITY, 2015, 28 (06) : 1859 - 1895
  • [9] On Conservation Laws for a Generalized Boussinesq Equation
    Anco, S.
    Rosa, M.
    Gandarias, M. L.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [10] Exact solutions and conservation laws of a coupled integrable dispersionless system
    Khalique, Chaudry Masood
    FILOMAT, 2012, 26 (05) : 957 - 964