Asymptotic analysis and layer decomposition for the couplex exercise

被引:4
|
作者
Del Pino, S [1 ]
Pironneau, O [1 ]
机构
[1] Univ Paris 06, Lab JL Lions, F-75013 Paris, France
关键词
Couplex; domain decomposition; finite element method; porous media;
D O I
10.1023/B:COMG.0000035076.46993.dd
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This document explores the possibilities of multiscale expansions and domain decomposition to solve part of the Couplex 1 exercise. We concentrate on the hydrostatic pressure and show that the slenderness of the domain and the large variations of the Darcy constants allows an analytical approximation which our test reveals to be true to relative errors smaller than 10(-3). The numerical tests are done in 2D with freefem+ and in 3D with freefem3D. Some considerations are also given for Iodine transport.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [21] Asymptotic analysis of second-order boundary layer correctors
    Onofrei, Daniel
    Vernescu, Bogdan
    APPLICABLE ANALYSIS, 2012, 91 (06) : 1097 - 1110
  • [22] An Asymptotic Analysis of a Simple Model for the Structure and Dynamics of the Ramdas Layer
    A. S. Vasudeva Murthy
    Roddam Narasimha
    Saji Varghese
    pure and applied geophysics, 2005, 162 : 1831 - 1857
  • [23] Asymptotic Analysis of an Elastic Layer under Light Fluid Loading
    Shamsi, Sheeru
    Prikazchikova, Ludmila
    MATHEMATICS, 2024, 12 (10)
  • [24] An asymptotic analysis of a simple model for the structure and dynamics of the Ramdas layer
    Murthy, ASV
    Narasimha, R
    Varghese, S
    PURE AND APPLIED GEOPHYSICS, 2005, 162 (10) : 1831 - 1857
  • [25] ASYMPTOTIC ANALYSIS OF TURBULENT CHANNEL AND BOUNDARY-LAYER FLOW
    BUSH, WB
    FENDELL, FE
    JOURNAL OF FLUID MECHANICS, 1972, 56 (DEC28) : 657 - 681
  • [26] A 3-LAYER ASYMPTOTIC ANALYSIS OF TURBULENT CHANNEL FLOW
    AFZAL, N
    BUSH, WB
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1985, 94 (2-3): : 135 - 148
  • [27] Asymptotic Expansions and Domain Decomposition
    Geymonat, G.
    Hendili, S.
    Krasucki, F.
    Serpilli, M.
    Vidrascu, M.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 749 - 757
  • [28] An asymptotic behavior of QR decomposition
    Huang, Huajun
    Tam, Tin-Yau
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) : 96 - 107
  • [29] Stability and asymptotic analysis of the Follmer-Schweizer decomposition on a finite probability space
    Boese, Sarah
    Cui, Tracy
    Johnston, Samuel
    Vega-Molino, Sylvie
    Mostovyi, Oleksii
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (04): : 607 - 623
  • [30] Computation of viscous or nonviscous conservation law by domain decomposition based on asymptotic analysis
    Bourgeat, A.
    Garbey, M.
    Numerical Methods for Partial Differential Equations, 1992, 8 (02) : 127 - 142