Asymptotic analysis and layer decomposition for the couplex exercise

被引:4
|
作者
Del Pino, S [1 ]
Pironneau, O [1 ]
机构
[1] Univ Paris 06, Lab JL Lions, F-75013 Paris, France
关键词
Couplex; domain decomposition; finite element method; porous media;
D O I
10.1023/B:COMG.0000035076.46993.dd
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This document explores the possibilities of multiscale expansions and domain decomposition to solve part of the Couplex 1 exercise. We concentrate on the hydrostatic pressure and show that the slenderness of the domain and the large variations of the Darcy constants allows an analytical approximation which our test reveals to be true to relative errors smaller than 10(-3). The numerical tests are done in 2D with freefem+ and in 3D with freefem3D. Some considerations are also given for Iodine transport.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [1] Asymptotic Analysis and Layer Decomposition for the Couplex Exercise
    Stephane Del Pino
    Olivier Pironneau
    Computational Geosciences, 2004, 8 : 149 - 162
  • [2] AN ASYMPTOTIC ANALYSIS OF THE OZONE DECOMPOSITION FLAME
    TAM, R
    COMBUSTION SCIENCE AND TECHNOLOGY, 1992, 84 (1-6) : 217 - 251
  • [3] Asymptotic Analysis of a Matrix Latent Decomposition Model
    Mantoux, Clement
    Durrleman, Stanley
    Allassonniere, Stephanie
    ESAIM-PROBABILITY AND STATISTICS, 2022, 26 : 208 - 242
  • [4] Asymptotic analysis of domain decomposition for optimal transport
    Mauro Bonafini
    Ismael Medina
    Bernhard Schmitzer
    Numerische Mathematik, 2023, 153 : 451 - 492
  • [5] Asymptotic analysis of domain decomposition for optimal transport
    Bonafini, Mauro
    Medina, Ismael
    Schmitzer, Bernhard
    NUMERISCHE MATHEMATIK, 2023, 153 (2-3) : 451 - 492
  • [6] Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure
    Blanc, F
    Gipouloux, O
    Panasenko, G
    Zine, AM
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (09): : 1351 - 1378
  • [7] Asymptotic analysis and asymptotic domain decomposition for an integral equation of the radiative transfer type
    Amosov, A
    Panasenko, G
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (12): : 1813 - 1831
  • [8] Asymptotic analysis for close evaluation of layer potentials
    Carvalho, Camille
    Khatri, Shilpa
    Kim, Arnold D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 327 - 341
  • [9] APPROACH TO ASYMPTOTIC ANALYSIS OF THE OZONE-DECOMPOSITION FLAME
    ROGG, B
    WICHMAN, IS
    COMBUSTION AND FLAME, 1985, 62 (03) : 271 - 293
  • [10] Integrations by asymptotic decomposition
    Haldar, K
    Datta, BK
    APPLIED MATHEMATICS LETTERS, 1996, 9 (02) : 81 - 83