Nonisomorphic Lefschetz fibrations on knot surgery 4-manifolds
被引:7
|
作者:
Park, Jongil
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaSungshin Womens Univ, Dept Math, Seoul 136742, South Korea
Park, Jongil
[3
]
Yun, Ki-Heon
论文数: 0引用数: 0
h-index: 0
机构:
Sungshin Womens Univ, Dept Math, Seoul 136742, South Korea
Sungshin Womens Univ, Basic Sci Res Inst, Seoul 136742, South KoreaSungshin Womens Univ, Dept Math, Seoul 136742, South Korea
Yun, Ki-Heon
[1
,2
]
机构:
[1] Sungshin Womens Univ, Dept Math, Seoul 136742, South Korea
[2] Sungshin Womens Univ, Basic Sci Res Inst, Seoul 136742, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
In this article we construct an infinite family of simply connected minimal symplectic 4-manifolds, each of which admits at least two nonisomorphic Lefschetz fibration structures with the same generic fiber. We obtain such examples by performing knot surgery on an elliptic surface E(n) using a special type of 2-bridge knots.
机构:
Univ Massachusetts, Dept Math & Stat, N Pleasant, Amherst, MA 01003 USAUniv Massachusetts, Dept Math & Stat, N Pleasant, Amherst, MA 01003 USA
Baykur, R. Inanc
Hayano, Kenta
论文数: 0引用数: 0
h-index: 0
机构:
Keio Univ, Fac Sci & Technol, Dept Math, Hiyoshi, Yokohama, Kanagawa 2238522, JapanUniv Massachusetts, Dept Math & Stat, N Pleasant, Amherst, MA 01003 USA
Hayano, Kenta
Monden, Naoyuki
论文数: 0引用数: 0
h-index: 0
机构:
Okayama Univ, Fac Sci, Dept Math, Okayama, Okayama 7008530, JapanUniv Massachusetts, Dept Math & Stat, N Pleasant, Amherst, MA 01003 USA