Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation

被引:25
|
作者
Xu, Ying [1 ]
Du, Zengji [1 ]
Wei, Lei [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
关键词
Burgers-KdV equation; Geometric singular perturbation method; Traveling wave solution; Heteroclinic orbits; Asymptotic behavior; MKDV EQUATION; SOLITARY WAVES; CANARD CYCLES; FRONTS; SYSTEMS; TERMS;
D O I
10.1007/s11071-015-2309-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we discuss the existence and asymptotic behavior of traveling waves for a generalized Burgers-KdV equation. We show the heteroclinic orbits of the associated ordinary differential equations for the generalized Burgers-KdV equation with a special convolution kernel and then establish the existence result of traveling wave solutions for the Burgers-KdV equation by employing geometric singular perturbation theory and the linear chain trick. And the asymptotic behavior of traveling waves is obtained by using the standard asymptotic theory.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 50 条
  • [21] Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method
    Zhuang, Kaige
    Du, Zengji
    Lin, Xiaojie
    [J]. NONLINEAR DYNAMICS, 2015, 80 (1-2) : 629 - 635
  • [22] Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method
    Kaige Zhuang
    Zengji Du
    Xiaojie Lin
    [J]. Nonlinear Dynamics, 2015, 80 : 629 - 635
  • [23] Stationary waves described by a generalized KdV-burgers equation
    Gromov E.M.
    Tyutin V.V.
    [J]. Radiophysics and Quantum Electronics, 1997, 40 (10) : 835 - 840
  • [24] Chaotic motion for the generalized KdV-Burgers equation with external perturbation
    Yu, Jun
    Li, Jieru
    Ng, Tick Wan
    [J]. PHYSICA SCRIPTA, 2009, 80 (06)
  • [25] Homotopy perturbation method for fractional KdV-Burgers equation
    Wang, Qi
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 35 (05) : 843 - 850
  • [26] PERTURBATION METHOD FOR A GENERALIZED BURGERS-EQUATION
    CURRO, C
    DONATO, A
    POVZNER, AY
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1992, 27 (02) : 149 - 155
  • [27] BOUNDED TRAVELING WAVES OF THE GENERALIZED BURGERS-FISHER EQUATION
    Zhou, Yuqian
    Liu, Qian
    Zhang, Weinian
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [28] Existence and asymptotic behavior for a singular parabolic equation
    Dávila, J
    Montenegro, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) : 1801 - 1828
  • [29] Nonlinear stability of strong rarefaction waves for the generalized KdV-Burgers-Kuramoto equation with large initial perturbation
    Duan, Ran
    Fan, Lili
    Kim, Jongsung
    Xie, Linqiao
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3254 - 3267
  • [30] Existence of Solitary Waves and Periodic Waves to a Perturbed Generalized KdV Equation
    Yan, Weifang
    Liu, Zhengrong
    Liang, Yong
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (04) : 537 - 555