Fast Visual Tracking using Memory Gradient Pursuit Algorithm

被引:0
|
作者
Guo, Qiang [1 ,2 ]
Wu, Chengdong [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Natl Police Univ China, Shenyang 110035, Peoples R China
基金
中国国家自然科学基金;
关键词
non-overlapping covariance descriptor; fast memory gradient pursuit; L1; minimization; visual tracking; scaled unscented transform;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sparse representation scheme is very influential in visual tracking field. These L1 trackers obtain robustness by finding the target with the minimum reconstruction error via L1 norm minimization problem. However, the high computational burden of L1 minimization and absence of effective model for appearance changes may hamper its application in real world sceneries. In this research, we present a fast and robust tracking method that exploits a fast memory gradient pursuit algorithm (FMGP) with sparse representation scheme in a Bayesian framework to accelerate the L1 minimization process. For tracking, our approach adopts a non-overlapping covariance descriptor and uses a new similarity metric with scaled unscented transform. In order to reduce the problem of drift tracking, we construct a different template dictionary including benchmark template with different scales, adaptive background templates and stable templates. We test the proposed tracking method on the challenging image sequences. Both quantitative and qualitative results demonstrate the excellent performances of the proposed algorithm compared with several state of the art tracking algorithms.
引用
收藏
页码:213 / 228
页数:16
相关论文
共 50 条
  • [41] VISUAL AND KINESTHETIC COMPONENTS OF PURSUIT-TRACKING PERFORMANCE
    THORSHEIM, HI
    HOUSTON, L
    BADGER, C
    JOURNAL OF MOTOR BEHAVIOR, 1974, 6 (03) : 199 - 203
  • [42] Fast Compressive Sensing Reconstruction Algorithm on FPGA using Orthogonal Matching Pursuit
    Yu, Zhelun
    Sul, Jincheng
    Yang, Fan
    Su, Yangfeng
    Zeng, Xuan
    Zhou, Dian
    Shi, Weiping
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 249 - 252
  • [43] Adversarial Attacks on Visual Objects Using the Fast Gradient Sign Method
    Syed Muhammad Ali Naqvi
    Mohammad Shabaz
    Muhammad Attique Khan
    Syeda Iqra Hassan
    Journal of Grid Computing, 2023, 21
  • [44] Adversarial Attacks on Visual Objects Using the Fast Gradient Sign Method
    Naqvi, Syed Muhammad Ali
    Shabaz, Mohammad
    Khan, Muhammad Attique
    Hassan, Syeda Iqra
    JOURNAL OF GRID COMPUTING, 2023, 21 (04)
  • [45] FAST FACE TRACKING USING PARALLEL PARTICLE FILTER ALGORITHM
    Liu, Ke-Yan
    Li, Shan-Qing
    Tang, Liang
    Wang, Lei
    Liu, Wei
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1302 - 1305
  • [46] A Weak Selection Stochastic Gradient Matching Pursuit Algorithm
    Zhao, Liquan
    Hu, Yunfeng
    Jia, Yanfei
    SENSORS, 2019, 19 (10)
  • [47] Long-term visual tracking using PTLD algorithm
    Liu, Jian
    Hao, Kuangrong
    Ding, Yongsheng
    Yang, Shiyu
    Huagong Xuebao/CIESC Journal, 2016, 67 (03): : 967 - 973
  • [48] Visual Object Tracking Using Improved Mean Shift Algorithm
    Setyawan, Sulfan Bagus
    Purwanto, Djoko
    Mardiyanto, Ronny
    2015 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2015,
  • [49] A visual object tracking algorithm using dense descriptors correspondences
    Zha, Yufei
    Yang, Yuan
    Wang, Jinjiang
    Zhang, Lichao
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2014, 48 (09): : 13 - 18
  • [50] Manipulator visual servoing and tracking of fish using a genetic algorithm
    Minami, M
    Agbanhan, J
    Asakura, T
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 1999, 26 (04) : 278 - 289