A domain decomposition method for a kind of optimization problems

被引:11
|
作者
Zeng, JP [1 ]
Zhou, SZ [1 ]
机构
[1] Hunan Univ, Inst Appl Math, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
optimization; domain decomposition; monotone convergence;
D O I
10.1016/S0377-0427(02)00423-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the monotone convergence of a multiplicative method for solving a kind of optimization problems. We show that the iterate sequence produced by the method converges to the solution of the problem monotonically. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 50 条
  • [21] Optimization Method for Globally Solving a Kind of Multiplicative Problems with Coefficients
    Jiao, Hongwei
    Yin, Jingben
    Guo, Yunrui
    MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 467-469 : 526 - 530
  • [22] A Multiscale Domain Decomposition Method for Flow and Transport Problems
    Ginting, Victor
    McCaskill, Bradley
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 249 - 258
  • [23] Domain decomposition method for parabolic problems with Neumann conditions
    Jun, Younbae
    Mai, Tsun-Zee
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1683 - 1695
  • [24] Domain Decomposition Method for Diffuse Optical Tomography problems
    Sikora, J.
    Grzywacz, T.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (06) : 1005 - 1013
  • [25] A GenEO Domain Decomposition method for Saddle Point problems
    Nataf, Frederic
    Tournier, Pierre-Henri
    COMPTES RENDUS MECANIQUE, 2023, 351
  • [26] A parallel nonoverlapping domain decomposition method for Stokes problems
    Jiang, MQ
    Dai, PL
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (02) : 209 - 224
  • [27] DOMAIN DECOMPOSITION METHOD FOR CRACK PROBLEMS WITH NONPENETRATION CONDITION
    Rudoy, Evgeny
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04): : 995 - 1009
  • [28] A Relation of Preconditioners in Domain Decomposition Method for Magnetostatic Problems
    Kanayama, Hiroshi
    Ogino, Masao
    Sugimoto, Shin-Ichiro
    Zheng, Hongjie
    Yodo, Kaworu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (07)
  • [29] A domain decomposition method in solving problems of mathematical physics
    Abrashin, VN
    DIFFERENTIAL EQUATIONS, 1996, 32 (05) : 658 - 667
  • [30] Parallel Domain Decomposition Solvers for Contact Shape Optimization Problems
    Vondrak, V.
    Kozubek, T.
    Dostal, Z.
    Kabelikova, P.
    Horak, D.
    Markopoulos, A.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94