Usefulness of MRI-based radiomic features for distinguishing Warthin tumor from pleomorphic adenoma: performance assessment using T2-weighted and post-contrast T1-weighted MR images

被引:7
|
作者
Faggioni, Lorenzo [1 ]
Gabelloni, Michela [1 ]
De Vietro, Fabrizio [1 ]
Frey, Jessica [1 ]
Mendola, Vincenzo [1 ]
Cavallero, Diletta [1 ]
Borgheresi, Rita [1 ]
Tumminello, Lorenzo [1 ]
Shortrede, Jorge [1 ]
Morganti, Riccardo [2 ]
Seccia, Veronica [3 ]
Coppola, Francesca [4 ,5 ]
Cioni, Dania [1 ,5 ]
Neri, Emanuele [1 ,5 ]
机构
[1] Univ Pisa, Acad Radiol, Dept Translat Res, Via Roma 67, I-56126 Pisa, Italy
[2] Univ Pisa, Dept Clin & Expt Med, Sect Stat, Via Roma 67, I-56126 Pisa, Italy
[3] Univ Pisa, Azienda Osped Univ Pisana, Dept Surg Med Mol Pathol & Crit Care Med, Otolaryngol Audiol & Phoniatr Operat Unit, I-56124 Pisa, Italy
[4] IRCCS Azienda Osped Univ Bologna, Dept Radiol, I-40138 Bologna, Italy
[5] SIRM Fdn, Italian Soc Med & Intervent Radiol, Via Signora 2, I-20122 Milan, Italy
关键词
Warthin tumor; Pleomorphic adenoma; Head and neck cancer; Parotid neoplasm; Radiomics; Magnetic resonance imaging;
D O I
10.1016/j.ejro.2022.100429
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose:Differentiating Warthin tumor (WT) from pleomorphic adenoma (PA) is of primary importance due to differences in patient management, treatment and outcome. We sought to evaluate the performance of MRIbased radiomic features in discriminating PA from WT in the preoperative setting. Methods:We retrospectively evaluated 81 parotid gland lesions (48 PA and 33 WT) on T2-weighted (T2w) images and 52 of them on post-contrast fat-suppressed T1-weighted (pcfsT1w) images. All MRI examinations were carried out on a 1.5-Tesla MRI scanner, and images were segmented manually using the software ITK-SNAP (www.itk-snap.org). Results:The most discriminative feature on pcfsT1w images was GLCM_InverseVariance, yielding area under the curve (AUC), sensitivity and specificity of 0.9, 86 % and 87 %, respectively. Skewness was the feature extracted from T2w images with the highest specificity (88 %) in discriminating WT from PA. Conclusion:Radiomic analysis could be an important tool to improve diagnostic accuracy in differentiating PA from WT.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features
    Yang, Liping
    Wang, Tianzuo
    Zhang, Jinling
    Kang, Shi
    Xu, Shichuan
    Wang, Kezheng
    BMC MEDICAL IMAGING, 2024, 24 (01)
  • [42] Whole-body MRI in children and adolescents: Can T2-weighted Dixon fat-only images replace standard T1-weighted images in the assessment of bone marrow?
    de Horatio, Laura Tanturri
    Zadig, Pia K.
    von Brandis, Elisabeth
    Rosendahl, Karen
    Avenarius, Derk F. M.
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 166
  • [43] Assessment of internal auditory canal tumors: A comparison of contrast-enhanced T1-weighted and steady-state T2-weighted gradient-echo MR imaging
    Schmalbrock, P
    Chakeres, DW
    Monroe, JW
    Saraswat, A
    Miles, BA
    Welling, DB
    AMERICAN JOURNAL OF NEURORADIOLOGY, 1999, 20 (07) : 1207 - 1213
  • [44] Thermal lesion conspicuity following interstitial radiofrequency thermal tumor ablation in humans: A comparison of STIR, turbo spin-echo T2-weighted, and contrast-enhanced T1-weighted MR images at 0.2 T
    Aschoff, AJ
    Rafie, N
    Jesberger, JA
    Duerk, JL
    Lewin, JS
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2000, 12 (02) : 584 - 589
  • [45] Thermal lesion conspicuity following interstitial radiofrequency thermal tumor ablation in humans: A comparison of STIR, turbo spin-echo T2-weighted, and contrast-enhanced T1-weighted MR images at 0.2 T
    Aschoff, AJ
    Rafie, N
    Jesberger, JA
    Duerk, JL
    Lewin, JS
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2000, 12 (04) : 584 - 589
  • [46] An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced T1-weighted and high-resolution T2-weighted MRI
    Shapey, Jonathan
    Wang, Guotai
    Dorent, Reuben
    Dimitriadis, Alexis
    Li, Wenqi
    Paddick, Ian
    Kitchen, Neil
    Bisdas, Sotirios
    Saeed, Shakeel R.
    Ourselin, Sebastien
    Bradford, Robert
    Vercauteren, Tom
    JOURNAL OF NEUROSURGERY, 2021, 134 (01) : 171 - 179
  • [47] Delineation and diagnosis of brain tumors from post contrast T1-weighted MR images using rough granular computing and random forest
    Koley, Subhranil
    Sadhu, Anup K.
    Mitra, Pabitra
    Chakraborty, Basabi
    Chakraborty, Chandan
    APPLIED SOFT COMPUTING, 2016, 41 : 453 - 465
  • [48] Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study
    Preetha, Chandrakanth Jayachandran
    Meredig, Hagen
    Brugnara, Gianluca
    Mahmutoglu, Mustafa A.
    Foltyn, Martha
    Isensee, Fabian
    Kessler, Tobias
    Pflueger, Irada
    Schell, Marianne
    Neuberger, Ulf
    Petersen, Jens
    Wick, Antje
    Heiland, Sabine
    Debus, Juergen
    Platten, Michael
    Idbaih, Ahmed
    Brandes, Alba A.
    Winkler, Frank
    van den Bent, Martin J.
    Nabors, Burt
    Stupp, Roger
    Maier-Hein, Klaus H.
    Gorlia, Thierry
    Tonn, Joerg-Christian
    Weller, Michael
    Wick, Wolfgang
    Bendszus, Martin
    Vollmuth, Philipp
    LANCET DIGITAL HEALTH, 2021, 3 (12): : E784 - E794
  • [49] Performance Evaluation of Age Estimation from T1-Weighted Images Using Brain Local Features and CNN
    Ito, Koichi
    Fujimoto, Ryuichi
    Huang, Tzu-Wei
    Chen, Hwann-Tzong
    Wu, Kai
    Sato, Kazunori
    Taki, Yasuyuki
    Fukuda, Hiroshi
    Aoki, Takafumi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 694 - 697
  • [50] Impact on MRI-based Postimplant Dosimetric Assessment for Permanent Prostate Brachytherapy using Contrast-enhanced T1 Weighted Images
    Ohashi, T.
    Momma, T.
    Yamashita, S.
    Hanada, T.
    Fukada, J.
    Shiraishi, Y.
    Shigematsu, N.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 78 (03): : S371 - S371