Wakamatsu tilting modules with finite FP-injective dimension

被引:5
|
作者
Zhu, Haiyan [1 ]
Ding, Nanqing [2 ]
机构
[1] Zhejiang Univ Technol, Dept Math, Zhejiang 310023, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
COHERENT RINGS;
D O I
10.1515/FORUM.2009.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a left coherent ring, (R)omega a Wakamatsu tilting module and S = End((R)omega) a right coherent ring. It is shown that the FP-injective dimensions of (R)omega and omega(S) are identical provided both of them are finite. It is also shown that in this case all finitely presented left R-modules (right S-modules) have special (perpendicular to)omega-precovers and special ((perpendicular to)omega)(perpendicular to)-preenvelopes.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 50 条
  • [1] Wakamatsu tilting modules with finite injective dimension
    Zhao, Guoqiang
    Yin, Lirong
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (04) : 865 - 876
  • [2] Wakamatsu tilting modules with finite injective dimension
    Guoqiang Zhao
    Lirong Yin
    [J]. Czechoslovak Mathematical Journal, 2013, 63 : 865 - 876
  • [3] FP-INJECTIVE COMPLEXES AND FP-INJECTIVE DIMENSION OF COMPLEXES
    Wang, Zhanping
    Liu, Zhongkui
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 91 (02) : 163 - 187
  • [4] ENVELOPES AND COVERS BY MODULES OF FINITE FP-INJECTIVE DIMENSIONS
    Zeng, Yuedi
    Chen, Jianlong
    [J]. COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3851 - 3867
  • [5] A Note on FP-Injective Dimension
    Yang SONGXian Neng DUZhi Bing ZHAO School of Mathematical ScienceAnhui UniversityAnhui PRChinaSchool of Mathematics and StatisticsSuzhou UniversityAnhui PRChina
    [J]. 数学研究与评论, 2011, 31 (03) : 462 - 466
  • [6] Complexes of FP-injective Modules
    Geng, Yuxian
    [J]. ALGEBRA COLLOQUIUM, 2010, 17 (04) : 667 - 684
  • [7] Strongly FP-injective modules
    Li, Weiqing
    Guan, Jiancheng
    Ouyang, Baiyu
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 3816 - 3824
  • [8] A Note on FP-Injective Dimension
    Yang SONG1
    2.School of Mathematics and Statistics
    [J]. Journal of Mathematical Research with Applications, 2011, (03) : 462 - 466
  • [9] Weak Dimension of FP-injective Modules Over Chain Rings
    Couchot, Francois
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 381 - 389
  • [10] Injective modules and fp-injective modules over valuation rings
    Couchot, F
    [J]. JOURNAL OF ALGEBRA, 2003, 267 (01) : 359 - 376