Injective modules and fp-injective modules over valuation rings

被引:14
|
作者
Couchot, F [1 ]
机构
[1] Univ Caen, Dept Math & Mecan, CNRS, UMR 6139,Lab Math Nicolas Oresme, F-14032 Caen, France
关键词
valuation ring; uniserial module; IF-ring; fp-injective; locally injective; almost maximal; countably generated;
D O I
10.1016/S0021-8693(03)00373-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable. When this last condition is satisfied it is also proved that every ideal of R is countably generated. New criteria for a valuation ring to be almost maximal are given. They generalize the criterion given by E. Matlis in the domain case. Necessary and sufficient conditions for a valuation ring to be an IF-ring are also given. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:359 / 376
页数:18
相关论文
共 50 条
  • [1] COHERENT RINGS AND FP-INJECTIVE MODULES
    STENSTRO.B
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1970, 2 (06): : 323 - &
  • [2] Semihereditary rings and FP-injective modules
    Tuganbaev A.A.
    [J]. Journal of Mathematical Sciences, 2002, 112 (6) : 4736 - 4742
  • [3] Pure projective modules and FP-injective modules over Morita rings
    Yan, Meiqi
    Yao, Hailou
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) : 1265 - 1293
  • [4] Pure projective modules and FP-injective modules over Morita rings
    Meiqi Yan
    Hailou Yao
    [J]. Frontiers of Mathematics in China, 2020, 15 : 1265 - 1293
  • [5] COHERENT RINGS AND GORENSTEIN FP-INJECTIVE MODULES
    Gao, Zenghui
    Wang, Fanggui
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (05) : 1669 - 1679
  • [6] Relative FP-injective modules and relative IF rings
    Wang, Fanggui
    Kim, Hwankoo
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3552 - 3582
  • [7] Weak Dimension of FP-injective Modules Over Chain Rings
    Couchot, Francois
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 381 - 389
  • [8] Complexes of FP-injective Modules
    Geng, Yuxian
    [J]. ALGEBRA COLLOQUIUM, 2010, 17 (04) : 667 - 684
  • [9] Strongly FP-injective modules
    Li, Weiqing
    Guan, Jiancheng
    Ouyang, Baiyu
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (09) : 3816 - 3824
  • [10] RESTRICTED M-INJECTIVE MODULES AND FP-INJECTIVE ENDOMORPHISM-RINGS
    WISBAUER, R
    [J]. COMMUNICATIONS IN ALGEBRA, 1986, 14 (02) : 255 - 276