Quartz crystal microbalance-based system for high-sensitivity differential sputter yield measurements

被引:10
|
作者
Rubin, B. [1 ]
Topper, J. L. [1 ]
Farnell, C. C. [1 ]
Yalin, A. P. [1 ]
机构
[1] Colorado State Univ, Ft Collins, CO 80523 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2009年 / 80卷 / 10期
关键词
ANGULAR-DISTRIBUTION; ENERGY; ION; ATOMS; DISTRIBUTIONS; AR+; BOMBARDMENT; SILVER;
D O I
10.1063/1.3249560
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a quartz crystal microbalance-based system for high sensitivity differential sputter yield measurements of different target materials due to ion bombardment. The differential sputter yields can be integrated to find total yields. Possible ion beam conditions include ion energies in the range of 30-350 eV and incidence angles of 0 degrees-70 degrees from normal. A four-grid ion optics system is used to achieve a collimated ion beam at low energy (<100 eV) and a two-grid ion optics is used for higher energies (up to 750 eV). A complementary weight loss approach is also used to measure total sputter yields. Validation experiments are presented that confirm high sensitivity and accuracy of sputter yield measurements. (C) 2009 American Institute of Physics. [doi:10.1063/1.3249560]
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Detection of two orchid viruses using quartz crystal microbalance-based DNA biosensors
    Eun, AJC
    Huang, LQ
    Chew, FT
    Li, SFY
    Wong, SM
    PHYTOPATHOLOGY, 2002, 92 (06) : 654 - 658
  • [22] Label-Free Detection of Gliadin in Food by Quartz Crystal Microbalance-Based Immunosensor
    Funari, Riccardo
    Terracciano, Irma
    Della Ventura, Bartolomeo
    Ricci, Sara
    Cardi, Teodoro
    D'Agostino, Nunzio
    Velotta, Raffaele
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2017, 65 (06) : 1281 - 1289
  • [23] Sputtering yield measurements at glancing incidence using a quartz crystal microbalance
    Kolasinski, Robert D.
    Polk, James E.
    Goebel, Dan
    Johnson, Lee K.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2007, 25 (02): : 236 - 245
  • [24] Quartz Crystal Microbalance-based Nanofibrous Membranes for Humidity Detection: Theoretical Model and Experimental Verification
    Wang, Xian-Feng
    Ding, Bin
    Yu, Jian-Yong
    He, Ji-Huan
    Sun, Gang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 (07) : 509 - 515
  • [25] High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor
    Kim, Namsoo
    Park, In-Seon
    Kim, Dong-Kyung
    BIOSENSORS & BIOELECTRONICS, 2007, 22 (08): : 1593 - 1599
  • [26] Development of an Electrochemical Quartz Crystal Microbalance-Based Immunosensor for C-reactive protein determination
    Gao, Kai
    Cui, Song
    Liu, Sibo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 812 - 821
  • [27] Quartz Crystal Microbalance-Based Evaluation of the Electrochemical Formation of an Aggregated Polypyrrole Particle-Based Layer
    Plausinaitis, Deivis
    Ratautaite, Vilma
    Mikoliunaite, Lina
    Sinkevicius, Linas
    Ramanaviciene, Almira
    Ramanavicius, Arunas
    LANGMUIR, 2015, 31 (10) : 3186 - 3193
  • [28] AN ELECTROCHEMICAL QUARTZ-CRYSTAL MICROBALANCE-BASED INVESTIGATION OF THE PROPERTIES DISPLAYED BY ELECTROACTIVE POLYPYRIDINE FILMS
    SCHIAVON, G
    COMISSO, N
    TONIOLO, R
    BONTEMPELLI, G
    ANALYTICA CHIMICA ACTA, 1995, 305 (1-3) : 212 - 218
  • [29] A Quartz Crystal Microbalance-Based Sensor System Coated with Functional Polymers for SO2 and NO2 Detection
    Yang, Chang-Yel
    Hwang, Min-Jin
    Ryu, Dong-Wan
    Park, Jong-Ho
    Ryu, Min-Su
    Moon, Hee
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (08) : 7189 - 7192
  • [30] In situ measurement of multistep anodic aluminum oxide fabrication for quartz crystal microbalance-based sensing applications
    Murray, Brandon
    Wang, Xuanjie
    Narayan, Shankar
    APPLIED THERMAL ENGINEERING, 2024, 243