Multiple imputation for missing edge data: A predictive evaluation method with application to Add Health

被引:41
|
作者
Wang, Cheng [1 ]
Butts, Carter T. [2 ,3 ]
Hipp, John R. [2 ,4 ]
Jose, Rupa [5 ]
Lakon, Cynthia M. [6 ]
机构
[1] Univ Notre Dame, Dept Sociol, 810 Flanner Hall, Notre Dame, IN 46556 USA
[2] Univ Calif Irvine, Dept Sociol, Irvine, CA USA
[3] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[4] Univ Calif Irvine, Dept Criminol Law & Soc, Irvine, CA USA
[5] Univ Calif Irvine, Dept Psychol & Social Behav, Irvine, CA USA
[6] Univ Calif Irvine, Program Publ Hlth, Irvine, CA USA
关键词
Missing edge data; ERGM-based imputation; Held-Out Predictive Evaluation (HOPE); NETWORK DATA; LONGITUDINAL NETWORK; SOCIAL NETWORKS; MODELS; INFERENCE;
D O I
10.1016/j.socnet.2015.12.003
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
Recent developments have made model-based imputation of network data feasible in principle, but the extant literature provides few practical examples of its use. In this paper, we consider 14 schools from the widely used In-School Survey of Add Health (Harris et al., 2009), applying an ERGM-based estimation and simulation approach to impute the network missing data for each school. Add Health's complex study design leads to multiple types of missingness, and we introduce practical techniques for handing each. We also develop a cross-validation based method - Held-Out Predictive Evaluation (HOPE) - for assessing this approach. Our results suggest that ERGM-based imputation of edge variables is a viable approach to the analysis of complex studies such as Add Health, provided that care is used in understanding and accounting for the study design. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [21] Shell-neighbor method and its application in missing data imputation
    Shichao Zhang
    Applied Intelligence, 2011, 35 : 123 - 133
  • [22] Imputation is beneficial for handling missing data in predictive models
    Steyerberg, Ewout W.
    van Veen, Mirjam
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2007, 60 (09) : 979 - 979
  • [23] Multiple imputation of missing data for survey data analysis
    Lupo, Coralie
    Le Bouquin, Sophie
    Michel, Virginie
    Colin, Pierre
    Chauvin, Claire
    EPIDEMIOLOGIE ET SANTE ANIMALE, 2008, NO 53, 2008, (53): : 73 - 83
  • [24] Multiple imputation for missing data: a brief introduction
    Baccini, Michela
    EPIDEMIOLOGIA & PREVENZIONE, 2008, 32 (03): : 162 - 163
  • [25] Multiple imputation for missing data - A cautionary tale
    Allison, PD
    SOCIOLOGICAL METHODS & RESEARCH, 2000, 28 (03) : 301 - 309
  • [26] Introduction to multiple imputation for dealing with missing data
    Lee, Katherine J.
    Simpson, Julie A.
    RESPIROLOGY, 2014, 19 (02) : 162 - 167
  • [27] The use of multiple imputation for the analysis of missing data
    Sinharay, S
    Stern, HS
    Russell, D
    PSYCHOLOGICAL METHODS, 2001, 6 (04) : 317 - 329
  • [28] Multiple imputation of ordinal missing not at random data
    Hammon, Angelina
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 671 - 692
  • [29] Regression multiple imputation for missing data analysis
    Yu, Lili
    Liu, Liang
    Peace, Karl E.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (09) : 2647 - 2664
  • [30] Multiple imputation of ordinal missing not at random data
    Angelina Hammon
    AStA Advances in Statistical Analysis, 2023, 107 : 671 - 692