Pancreas segmentation by two-view feature learning and multi-scale supervision

被引:14
|
作者
Chen, Haipeng [1 ,2 ]
Liu, Yunjie [1 ,2 ]
Shi, Zenan [1 ,2 ]
Lyu, Yingda [3 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
[3] Jilin Univ, Publ Comp Educ & Res Ctr, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Pancreas segmentation; Two-view; Attention mechanism; Multi-scale supervision;
D O I
10.1016/j.bspc.2022.103519
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Automatic organ segmentation systems can accelerate the development of computer-aided diagnosis (CAD) in clinical applications. In this paper, we focus on the challenging pancreas segmentation task. The tiny size, poor contrast, and blurred boundaries of the pancreas make it hard to detect. Current approaches emphasize decomposing this task into subtasks (localization and segmentation) and using the same network to solve different tasks. However, they overestimate the generalization ability of their models. In addition, current methods rely too much on the result of localization. To address these challenges, we propose a novel network by two-view feature learning based on attention mechanism and multi-scale supervision, which we term TVMS-Net. For localization, we adopt Attention Gate (AG) to distinguish appearance features of the pancreas in shallow layers. For segmentation, a simple and effective Residual Multi-Scale Dilated Attention (RMSA) module is designed to extract comprehensive inter-channel relationships and multi-scale spatial information. TVMS-Net is supervised in multi-scale to learn specific-level semantic information. Experimental results on two pancreas datasets show that TVMS-Net obtains remarkable performance. Importantly, TVMS-Net also achieves excellent segmentation accuracy on another tiny organ dataset, i.e., the spleen, which justifies the reliability and robustness of our method.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] MCNet: Multiscale Clustering Network for Two-View Geometry Learning and Feature Matching
    Wang, Gang
    Chen, Yufei
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (06) : 1507 - 1509
  • [22] MCNet: Multiscale Clustering Network for Two-View Geometry Learning and Feature Matching
    Gang Wang
    Yufei Chen
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (06) : 1507 - 1509
  • [23] Learning Two-View Stereo Matching
    Xiao, Jianxiong
    Chen, Jingni
    Yeung, Dit-Yan
    Quan, Long
    COMPUTER VISION - ECCV 2008, PT III, PROCEEDINGS, 2008, 5304 : 15 - 27
  • [24] Unified Multi-scale Feature Abstraction for Medical Image Segmentation
    Fang, Xi
    Du, Bo
    Xu, Sheng
    Wood, Bradford J.
    Yan, Pingkun
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [25] Cascaded Multi-Scale Feature Interaction for choroidal atrophy segmentation
    Song, Jiahuan
    Chen, Xinjian
    Zhu, Weifang
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [26] An Improved Multi-Scale Feature Fusion for Skin Lesion Segmentation
    Liu, Luzhou
    Zhang, Xiaoxia
    Li, Yingwei
    Xu, Zhinan
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [27] Segmentation of aerial image with multi-scale feature and attention model
    Ning Q.
    Hu S.-Y.
    Lei Y.-J.
    Chen B.-C.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (06): : 1218 - 1224
  • [28] Multi-Scale Feature Aggregation Network for Water Area Segmentation
    Hu, Kai
    Li, Meng
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2022, 14 (01)
  • [29] Efficient Multi-Scale Feature Extraction for Lightweight Semantic Segmentation
    Liu Y.
    Lu C.-Z.
    Li S.-J.
    Zhang L.
    Wu Y.-H.
    Cheng M.-M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (07): : 1517 - 1528
  • [30] Scattered Train Bolt Point Cloud Segmentation Based on Hierarchical Multi-Scale Feature Learning
    Zeng, Ni
    Li, Jinlong
    Zhang, Yu
    Gao, Xiaorong
    Luo, Lin
    SENSORS, 2023, 23 (04)