Polynomial process algebra

被引:0
|
作者
Liu, Bai [1 ]
Wu, Jinzhao [2 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Comp Applicat, Chengdu 610041, Sichuan, Peoples R China
[2] Guangxi Univ Nat, Guangxi Key Lab Hybird Computat & IC Design Anal, Nanning 530006, Guangxi, Peoples R China
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
olynomial process algebra; polynomial transition systems; bisimulation; concurrent systems;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a polynomial process algebra (PPA) like basic process algebra which can be used to model both polynomial behavior of parallel systems. It provides a nature framework for the concurrent composition systems, and can deal with the nondeterministic behavior. This process algebra is obtained by the polynomial transition systems which we defined. In this paper we concentrate on giving the syntax and semantic, and meanwhile defining the bisimulation equivalence. In the last we give an example to illustrate it.
引用
收藏
页码:3004 / 3007
页数:4
相关论文
共 50 条
  • [1] On Polynomial Graded Subalgebras of a Polynomial Algebra
    Jedrzejewicz, Piotr
    [J]. ALGEBRA COLLOQUIUM, 2010, 17 : 929 - 936
  • [2] A Polynomial Time Algorithm for Checking Regularity of Totally Normed Process Algebra
    杨非
    黄浩
    [J]. Journal of Shanghai Jiaotong University(Science), 2015, 20 (03) : 273 - 280
  • [3] A polynomial time algorithm for checking regularity of totally normed process algebra
    Yang F.
    Huang H.
    [J]. Journal of Shanghai Jiaotong University (Science), 2015, 20 (3) : 273 - 280
  • [4] GENERIC POLYNOMIAL OF AN ALGEBRA
    OEHMKE, RH
    [J]. SCRIPTA MATHEMATICA, 1973, 29 (3-4): : 331 - 336
  • [5] DEFINITION OF POLYNOMIAL ALGEBRA
    SCHWEIGERT, D
    [J]. MATHEMATISCHE NACHRICHTEN, 1977, 79 : 249 - 251
  • [6] On -Algebra and -Polynomial Relations
    Berdnikov, I.
    Gumerov, R.
    Lipacheva, E.
    Shishkin, K.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (06) : 1990 - 1997
  • [7] Polynomial Algebra in Form 4
    Kuipers, J.
    [J]. 14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011), 2012, 368
  • [8] The Basic Polynomial Algebra Subprograms
    Chen, Changbo
    Covanov, Svyatoslav
    Mansouri, Farnam
    Moir, Robert H. C.
    Maza, Marc Moreno
    Xie, Ning
    Xie, Yuzhen
    [J]. ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (03): : 97 - 100
  • [9] Polynomial algebra for Birkhoff interpolants
    Butcher, John C.
    Corless, Robert M.
    Gonzalez-Vega, Laureano
    Shakoori, Azar
    [J]. NUMERICAL ALGORITHMS, 2011, 56 (03) : 319 - 347
  • [10] Polynomial Invariants by Linear Algebra
    de Oliveira, Steven
    Bensalem, Saddek
    Prevosto, Virgile
    [J]. AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, ATVA 2016, 2016, 9938 : 479 - 494