Three machine learning models for the 2019 Solubility Challenge

被引:9
|
作者
Mitchell, John B. O. [1 ,2 ]
机构
[1] Univ St Andrews, EaStCHEM Sch Chem, St Andrews KY16 9ST, Fife, Scotland
[2] Univ St Andrews, Biomed Sci Res Complex, St Andrews KY16 9ST, Fife, Scotland
来源
ADMET AND DMPK | 2020年 / 8卷 / 03期
关键词
Aqueous intrinsic solubility; Solubility prediction; Random Forest; Extra Trees; Bagging; Consensus classifiers; Wisdom of Crowds; Inter-laboratory error; INTRINSIC AQUEOUS SOLUBILITY; DRUG SOLUBILITY; RANDOM FOREST; FREE-ENERGY; PREDICTION; SOLVATION; DISCOVERY;
D O I
10.5599/admet.835
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We describe three machine learning models submitted to the 2019 Solubility Challenge. All are founded on tree-like classifiers, with one model being based on Random Forest and another on the related Extra Trees algorithm. The third model is a consensus predictor combining the former two with a Bagging classifier. We call this consensus classifier Vox Machinarum, and here discuss how it benefits from the Wisdom of Crowds. On the first 2019 Solubility Challenge test set of 100 low-variance intrinsic aqueous solubilities, Extra Trees is our best classifier. One the other, a high-variance set of 32 molecules, we find that Vox Machinarum and Random Forest both perform a little better than Extra Trees, and almost equally to one another. We also compare the gold standard solubilities from the 2019 Solubility Challenge with a set of literature-based solubilities for most of the same compounds.
引用
收藏
页码:215 / +
页数:37
相关论文
共 50 条
  • [31] Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules
    Timon Sebastian Schroeter
    Anton Schwaighofer
    Sebastian Mika
    Antonius Ter Laak
    Detlev Suelzle
    Ursula Ganzer
    Nikolaus Heinrich
    Klaus-Robert Müller
    [J]. Journal of Computer-Aided Molecular Design, 2007, 21 : 651 - 664
  • [32] Experimental analysis and prediction of radionuclide solubility using machine learning models: Effects of organic complexing agents
    Kim, Bolam
    Manchuri, Amaranadha Reddy
    Oh, Gi-Taek
    Lim, Youngsu
    Son, Yuhwa
    Choi, Seho
    Kang, Myunggoo
    Jang, Jiseon
    Ha, Jaechul
    Cho, Chun-Hyung
    Lee, Min-Woo
    Lee, Dae Sung
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2024, 469
  • [33] Development and validation of machine learning models for prediction of nanomedicine solubility in supercritical solvent for advanced pharmaceutical manufacturing
    Liu, Wenlin
    Zhao, Ruijuan
    Su, Xiankun
    Mohamed, Abdullah
    Diana, Tazeddinova
    [J]. Journal of Molecular Liquids, 2022, 358
  • [34] Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules
    Timon Sebastian Schroeter
    Anton Schwaighofer
    Sebastian Mika
    Antonius Ter Laak
    Detlev Suelzle
    Ursula Ganzer
    Nikolaus Heinrich
    Klaus-Robert Müller
    [J]. Journal of Computer-Aided Molecular Design, 2007, 21 : 485 - 498
  • [35] Development of Solubility Prediction Models with Ensemble Learning
    Hu, Pingfan
    Jiao, Zeren
    Zhang, Zhuoran
    Wang, Qingsheng
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (30) : 11627 - 11635
  • [36] Memristor Models for Machine Learning
    Carbajal, Juan Pablo
    Dambre, Joni
    Hermans, Michiel
    Schrauwen, Benjamin
    [J]. NEURAL COMPUTATION, 2015, 27 (03) : 725 - 747
  • [37] Anonymizing Machine Learning Models
    Goldsteen, Abigail
    Ezov, Gilad
    Shmelkin, Ron
    Moffie, Micha
    Farkash, Ariel
    [J]. DATA PRIVACY MANAGEMENT, CRYPTOCURRENCIES AND BLOCKCHAIN TECHNOLOGY, ESORICS 2021, 2022, 13140 : 121 - 136
  • [38] Predicting sulfate mineral scale solubility with machine learning
    Cao, Zhiqian
    Hu, Yandi
    Zhang, Ping
    [J]. JOURNAL OF CLEANER PRODUCTION, 2024, 461
  • [39] Confidentiality of Machine Learning Models
    Poltavtseva, M. A.
    Rudnitskaya, E. A.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2023, 57 (08) : 975 - 982
  • [40] Machine learning models the universe
    不详
    [J]. ASTRONOMY & GEOPHYSICS, 2019, 60 (05) : 7 - 7