Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT

被引:39
|
作者
Zhang, Yuewen [1 ]
Jia, Xiaopeng [1 ]
Sun, Hairui [1 ]
Sun, Bing [1 ]
Liu, Binwu [1 ]
Liu, Haiqiang [1 ]
Kong, Lingjiao [1 ]
Ma, Hongan [1 ]
机构
[1] Jilin Univ, Natl Key Lab Superhard Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectric properties; High pressure; SnSe; Band gap; Electrical resistivity; First principle calculation; POLYCRYSTALLINE SNSE; BULK THERMOELECTRICS; TRANSPORT-PROPERTIES; TEMPERATURE; POWER; ENHANCEMENT; CRYSTALS; FIGURE; MERIT; TE;
D O I
10.1016/j.jallcom.2016.01.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polycrystalline SnSe bulks were synthesized by a simple and rapid High Pressure and High Temperature (HPHT) method in pressure range of 1-5 GPa, and the thermoelectric performances were assessed after high pressure was released. HPHT can not only sharply shorten synthetic time to 25 min, but also tune thermoelectric properties in a broad range. More importantly, the beneficial thermoelectric properties under high pressure are effectively retained to ambient conditions via "quenching" procedure. The intrinsically high electrical resistivity of SnSe is remarkably reduced by HPHT, which is ascribed to pressure-induced band gap narrowing. A minimum electrical resistivity of 0.1 Omega cm at 5 GPa and maximum power factor of 1 x 10(-4) Wm(-1) K-2 Wm at 3 GPa for SnSe0.98Te0.02 are achieved at ambient conditions. Besides, the first principle calculations reveal that high pressure can fundamentally shrink interatomic distances and lattice parameters, which thus lead to a decreased band gap. The pressure coefficient of band gap dE(g)/dP = -0.074 eV/GPa is obtained. The variations of electronic structure under high pressure are in accordance with the trend in measured thermoelectric properties. (c) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 50 条
  • [41] Electronic structure and thermoelectric properties of biaxial strained SnSe from first principles calculations
    Zhou, Kai
    Wei, Wei
    PHYSICA SCRIPTA, 2022, 97 (05)
  • [42] Investigation of the electronic structure and lattice dynamics of the thermoelectric material Na-doped SnSe
    Wu, P.
    Zhang, B.
    Peng, K. L.
    Hagihala, M.
    Ishikawa, Y.
    Kofu, M.
    Lee, S. H.
    Kumigashira, H.
    Hu, C. S.
    Qi, Z. M.
    Nakajima, K.
    Wang, G. Y.
    Sun, Z.
    Kamiyama, T.
    PHYSICAL REVIEW B, 2018, 98 (09)
  • [43] High-Quality SnSe2 Single Crystals: Electronic and Thermoelectric Properties
    Pham, Anh-Tuan
    Vu, Thi Hoa
    Cheng, Chang
    Trinh, Thi Ly
    Lee, Ji-Eun
    Ryu, Hyejin
    Hwang, Choongyu
    Mo, Sung-Kwan
    Kim, Jungdae
    Zhao, Li-dong
    Duong, Anh-Tuan
    Cho, Sunglae
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 10787 - 10792
  • [44] Electronic structure and assessment of thermoelectric performance of TiCoSb
    Xu, B.
    Zhang, J.
    Li, X. -F.
    Yu, G. -Q.
    Ma, S. -S.
    Wang, Y. -S.
    Yi, L.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 (02) : 104 - 107
  • [45] Modification of Bulk Heterojunction and CI Doping for High-Performance Thermoelectric SnSe2/SnSe Nanocomposites
    Shu, Yuejiao
    Su, Xianli
    Xie, Hongyao
    Zheng, Gang
    Liu, Wei
    Yan, Yonggao
    Luo, Tingting
    Yang, Xiao
    Yang, Dongwang
    Uher, Ctirad
    Tang, Xinfeng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (18) : 15793 - 15802
  • [46] Modulating structures to decouple thermoelectric transport leads to high performance in polycrystalline SnSe
    Wang, Yuping
    Bai, Shulin
    Shi, Haonan
    Cao, Qian
    Qin, Bingchao
    Zhao, Li-Dong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 12 (01) : 144 - 152
  • [47] Synthesis of n-type SnSe polycrystals with high and isotropic thermoelectric performance
    Chien, Nguyen Viet
    Park, Hyun Min
    Shin, Hosun
    Song, Jae Yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 937
  • [48] Ag, Pb co-doped SnSe high performance thermoelectric materials
    Li, Shuailing
    Li, Zhen
    Duan, Jie
    Lou, Shiyun
    Zhou, Shaomin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (22)
  • [49] Phonon Spectra and Lattice Thermal Conductivity of High-Performance Thermoelectric SnSe
    Filanovich, A. N.
    Povzner, A. A.
    JETP LETTERS, 2024, 120 (03) : 195 - 198
  • [50] Enhanced Thermoelectric Performance of SnSe with Trace Au Particles via Transport Channel Design
    Ma, Chi
    Wang, Xinyu
    Liu, Hongquan
    Su, Qiang
    Zhang, Qian
    Gu, Yijie
    Cui, Hongzhi
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04): : 2604 - 2610