Fully automated condyle segmentation using 3D convolutional neural networks

被引:2
|
作者
Jha, Nayansi [1 ]
Kim, Taehun [2 ,3 ]
Ham, Sungwon [4 ]
Baek, Seung-Hak [5 ]
Sung, Sang-Jin [6 ]
Kim, Yoon-Ji [6 ]
Kim, Namkug [3 ]
机构
[1] Univ Ulsan, Grad Sch Med, Coll Med, Seoul, South Korea
[2] Univ Ulsan, Asan Med Inst Convergence Sci & Technol, Asan Med Ctr, Dept Biomed Engn,Coll Med, Seoul, South Korea
[3] Univ Ulsan, Asan Med Inst Convergence Sci & Technol, Asan Med Ctr, Dept Convergence Med,Coll Med, Seoul, South Korea
[4] Korea Univ, Res Strategy Team, Coll Med, Seoul, South Korea
[5] Seoul Natl Univ, Dent Res Inst, Sch Dent, Dept Orthodont, Seoul, South Korea
[6] Univ Ulsan, Asan Med Ctr, Dept Orthodont, Coll Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1038/s41598-022-24164-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this study was to develop an auto-segmentation algorithm for mandibular condyle using the 3D U-Net and perform a stress test to determine the optimal dataset size for achieving clinically acceptable accuracy. 234 cone-beam computed tomography images of mandibular condyles were acquired from 117 subjects from two institutions, which were manually segmented to generate the ground truth. Semantic segmentation was performed using basic 3D U-Net and a cascaded 3D U-Net. A stress test was performed using different sets of condylar images as the training, validation, and test datasets. Relative accuracy was evaluated using dice similarity coefficients (DSCs) and Hausdorff distance (HD). In the five stages, the DSC ranged 0.886-0.922 and 0.912-0.932 for basic 3D U-Net and cascaded 3D U-Net, respectively; the HD ranged 2.557-3.099 and 2.452-2.600 for basic 3D U-Net and cascaded 3D U-Net, respectively. Stage V (largest data from two institutions) exhibited the highest DSC of 0.922 +/- 0.021 and 0.932 +/- 0.023 for basic 3D U-Net and cascaded 3D U-Net, respectively. Stage IV (200 samples from two institutions) had a lower performance than stage III (162 samples from one institution). Our results show that fully automated segmentation of mandibular condyles is possible using 3D U-Net algorithms, and the segmentation accuracy increases as training data increases.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks
    Xu, Xiaojie
    Liu, Chang
    Zheng, Youyi
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (07) : 2336 - 2348
  • [22] Segmentation of Chronic Subdural Hematomas Using 3D Convolutional Neural Networks
    Kellogg, Ryan T.
    Levitt, Michael
    Barros, Guilherme
    Sen, Rajeev
    Bass, David
    Mason, James
    Vargas, Jan
    [J]. STROKE, 2021, 52
  • [23] Segmentation of Chronic Subdural Hematomas Using 3D Convolutional Neural Networks
    Kellogg, Ryan T.
    Vargas, Jan
    Barros, Guilherme
    Sen, Rajeev
    Bass, David
    Mason, J. Ryan
    Levitt, Michael
    [J]. WORLD NEUROSURGERY, 2021, 148 : E58 - E65
  • [24] 3D shape segmentation via shape fully convolutional networks
    Wang, Pengyu
    Gan, Yuan
    Shui, Panpan
    Yu, Fenggen
    Zhang, Yan
    Chen, Songle
    Sun, Zhengxing
    [J]. COMPUTERS & GRAPHICS-UK, 2018, 76 : 182 - 192
  • [25] 3D shape segmentation via shape fully convolutional networks
    Wang, Pengyu
    Gan, Yuan
    Shui, Panpan
    Yu, Fenggen
    Zhang, Yan
    Chen, Songle
    Sun, Zhengxing
    [J]. COMPUTERS & GRAPHICS-UK, 2018, 70 : 128 - 139
  • [26] Hepatic artery segmentation with 3D convolutional neural networks
    Kock, Farina
    Chlebus, Grzegorz
    Thielke, Felix
    Schenk, Andrea
    Meine, Hans
    [J]. MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [27] 3D VIDEO SUPER-RESOLUTION USING FULLY CONVOLUTIONAL NEURAL NETWORKS
    Xie, Yanchun
    Xiao, Jimin
    Tillo, Tammam
    Wei, Yunchao
    Zhao, Yao
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [28] Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks
    Roth, Holger
    Oda, Masahiro
    Shimizu, Natsuki
    Oda, Hirohisa
    Hayashi, Yuichiro
    Kitasaka, Takayuki
    Fujiwara, Michitaka
    Misawa, Kazunari
    Mori, Kensaku
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [29] Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks
    Salehi, Seyed Sadegh Mohseni
    Erdogmus, Deniz
    Gholipour, Ali
    [J]. MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2017), 2017, 10541 : 379 - 387
  • [30] 3D Prostate Segmentation in MR Image Using 3D Deeply Supervised Convolutional Neural Networks
    Yang, X.
    Lei, Y.
    Wang, T.
    Jiang, X.
    Jani, A.
    Mao, H.
    Curran, N. V.
    Patel, P.
    Liu, T.
    Wang, B.
    [J]. MEDICAL PHYSICS, 2018, 45 (06) : E582 - E583