Spin state, electronic structure and bonding on C-scorpionate [Fe (II)Cl2(tpm)] catalyst: An experimental and computational study
被引:6
|
作者:
Carlotto, Silvia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, ItalyUniv Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, Italy
Carlotto, Silvia
[1
]
论文数: 引用数:
h-index:
机构:
Casella, Girolamo
[2
,3
]
Floreano, Luca
论文数: 0引用数: 0
h-index: 0
机构:
CNR IOM, Lab TASC, Basovizza SS 14,Km 163-5, I-34149 Trieste, ItalyUniv Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, Italy
Floreano, Luca
[4
]
Verdini, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
CNR IOM, Lab TASC, Basovizza SS 14,Km 163-5, I-34149 Trieste, ItalyUniv Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, Italy
Verdini, Alberto
[4
]
Ribeiro, Ana P. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Inst Super Tecn, Ctr Quim Estrutural, Ave Rovisco Pais, P-1049001 Lisbon, PortugalUniv Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, Italy
Ribeiro, Ana P. C.
[5
]
Martins, Lufsa M. D. R. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, Inst Super Tecn, Ctr Quim Estrutural, Ave Rovisco Pais, P-1049001 Lisbon, PortugalUniv Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, Italy
Martins, Lufsa M. D. R. S.
[5
]
论文数: 引用数:
h-index:
机构:
Casarin, Maurizio
[1
]
机构:
[1] Univ Padua, Dipartimento Sci Chim, Via Francesco Marzolo 1, I-35131 Padua, Italy
[2] Univ Palermo, Dipartimento Sci Terra & Mare, Via Archirafi 20, I-90123 Palermo, Italy
[3] Consorzio Interuniv Ric Chim Met Sistemi Biol CIR, Piazza Umberto I, I-70121 Bari, Italy
The Fe(II) spin state in the condensed phase of [Fe(II)Cl2(tpm)] (tpm = [tris(pyrazol-1-yl)methane]; 1) catalyst has been determined through a combined experimental and theoretical investigation of X-Ray Absorption Spectroscopy (XAS) at the L-Fe(2,3)-edges and K-N-edge. Results indicated that in this phase a mixed singlet/triplet state is plausible. These results have been compared with the already know Fe singlet spin state of the same complex in water solution. A detailed analysis of the electronic structure and bonding mechanism of the catalyst showed that the preference for the low-spin diamagnetic ground state, strongly depends upon the ligands, the bulk solvent and the interaction of the complex's vacant site (the sixth) with a further ligand. Moreover, comparison of the electronic properties of the complex in condensed phase and water solution showed an increased Lewis acidity of the catalyst in solution phase, due to a decreasing of the LUMO energy of about 8 kcal/mol. These results gave an overall picture of the electronic behavior of the complex investigated, on going from condensed to water solution phase, explaining the preferred use of 1 as catalyst in homogeneous catalysis. The NeFe(II) interaction has been thoroughly investigated by means of DFT Kohn-Sham and EDA bond analysis applied to i) the isolated [Fe(II)Cl-2(tpm)] and ii) the [Fe(II)Cl-2(tpm)] interacting with water as a solvent within the Conductor-like Screening Mode (COSMO) framework. Results showed that both tpm -> Fe(II) sigma and tpm?Fe (II) pi Charge Transfer (CT) interactions characterize the Fe(II)-tpm interaction. Moreover, the three tpm N atoms do not equally interact with the Fe(II) and one of them shares a suitable available iron-based d virtual orbital, to bind a further ligand in trans position.