Connectedness of the isospectral manifold for one-dimensional half-line Schrodinger operators

被引:5
|
作者
Gesztesy, F [1 ]
Simon, B
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
isospectral sets of potentials; half-line Schrodinger operators; inverse problems;
D O I
10.1023/B:JOSS.0000037217.89500.b3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let V-0\ be a real-valued function on [0,infinity) and V is an element of L-1([0, R]) for all R > 0 so that H(V-0)=- d(2)/ dx(2)+ V-0 in L-2([0,infinity)) with u(0) = 0 boundary conditions has discrete spectrum bounded from below. Let M(V-0) be the set of V so that H( V) and H(V-0) have the same spectrum. We prove that M(V-0) is connected.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [21] One-Dimensional Schrodinger Operators with Complex Potentials
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2020, 21 (06): : 1947 - 2008
  • [22] THE NONLINEAR SCHRODINGER EQUATION ON THE HALF-LINE
    Fokas, Athanassios S.
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (01) : 681 - 709
  • [23] Wave and scattering operators for the nonlinear matrix Schrodinger equation on the half-line with a potential
    Ballesteros, Miguel
    Iniesta, Diego
    Naumkin, Ivan
    Pena, Clemente
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 227
  • [24] Asymptotics of Eigenvalues of Non-Self-Adjoint Schrodinger Operators on a Half-Line
    Shin, Kwang C.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2010, 10 (01) : 111 - 133
  • [25] Multidimensional Schrodinger operators whose spectrum features a half-line and a Cantor set
    Damanik, David
    Fillman, Jake
    Gorodetski, Anton
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
  • [26] ESTIMATES OF EIGENVALUES OF SCHRODINGER OPERATORS ON THE HALF-LINE WITH COMPLEX-VALUED POTENTIALS
    Enblom, Alexandra
    OPERATORS AND MATRICES, 2017, 11 (02): : 369 - 380
  • [27] Existence of global attractor for one-dimensional weakly damped nonlinear Schrodinger equation with Dirac interaction and artificial boundary condition in half-line
    Abounouh, Mostafa
    Al Moatassime, Hassan
    Chrifi, Abderrazak
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [28] Resonances for Dirac operators on the half-line
    Iantchenko, Alexei
    Korotyaev, Evgeny
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 279 - 313
  • [30] Blow-up rate of the unique solution for a class of one-dimensional problems on the half-line
    Zhang, Zhijun
    Mi, Ling
    Yin, Xiugui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 797 - 805