Connectedness of the isospectral manifold for one-dimensional half-line Schrodinger operators

被引:5
|
作者
Gesztesy, F [1 ]
Simon, B
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
isospectral sets of potentials; half-line Schrodinger operators; inverse problems;
D O I
10.1023/B:JOSS.0000037217.89500.b3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let V-0\ be a real-valued function on [0,infinity) and V is an element of L-1([0, R]) for all R > 0 so that H(V-0)=- d(2)/ dx(2)+ V-0 in L-2([0,infinity)) with u(0) = 0 boundary conditions has discrete spectrum bounded from below. Let M(V-0) be the set of V so that H( V) and H(V-0) have the same spectrum. We prove that M(V-0) is connected.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [1] Connectedness of the Isospectral Manifold for One-Dimensional Half-Line Schrödinger Operators
    Fritz Gesztesy
    Barry Simon
    Journal of Statistical Physics, 2004, 116 : 361 - 365
  • [2] Homogeneous Schrodinger Operators on Half-Line
    Bruneau, Laurent
    Derezinski, Jan
    Georgescu, Vladimir
    ANNALES HENRI POINCARE, 2011, 12 (03): : 547 - 590
  • [3] Schrodinger Wave Operators on the Discrete Half-Line
    Inoue, Hideki
    Tsuzu, Naohiro
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2019, 91 (05)
  • [4] A characterization of singular Schrodinger operators on the half-line
    Scandone, Raffaele
    Luperi Baglini, Lorenzo
    Simonov, Kyrylo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 923 - 941
  • [5] Half-line Schrodinger operators with no bound states
    Damanik, D
    Killip, R
    ACTA MATHEMATICA, 2004, 193 (01) : 31 - 72
  • [6] Trace formulas for Schrodinger operators on the half-line
    Demirel, Semra
    Usman, Muhammad
    BULLETIN OF MATHEMATICAL SCIENCES, 2011, 1 (02) : 397 - 427
  • [7] Schrodinger Operators on a Half-Line with Inverse Square Potentials
    Kovarik, H.
    Truc, F.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 170 - 176
  • [8] On Schrodinger Operators with Inverse Square Potentials on the Half-Line
    Derezinski, Jan
    Richard, Serge
    ANNALES HENRI POINCARE, 2017, 18 (03): : 869 - 928
  • [9] Schrodinger operators on half-line with shrinking potentials at the origin
    Dell'Antonio, Gianfausto
    Michelangeli, Alessandro
    ASYMPTOTIC ANALYSIS, 2016, 97 (1-2) : 113 - 138
  • [10] On convergence to equilibrium for one-dimensional chain of harmonic oscillators on the half-line
    Dudnikova, T. V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (04)