Geometric entanglement in the integer quantum Hall state at v=1 with boundaries

被引:3
|
作者
Rozon, Pierre-Gabriel [1 ]
Bolteau, Pierre-Alexandre [2 ]
Witczak-Krempa, William [1 ,3 ,4 ]
机构
[1] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[2] Sorbonne Univ, Unite Format & Rech Phys, F-75252 Paris, France
[3] Univ Montreal, Ctr Rech Math, Ctr Ville Stn, POB 6128, Montreal, PQ H3C 3J7, Canada
[4] Regrp Quebecois Mat Pointe RQMP, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevB.102.155417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Boundaries constitute a rich playground for quantum many-body systems because they can lead to novel degrees of freedom such as protected boundary states in topological phases. Here, we study the ground state of integer quantum Hall systems in the presence of boundaries through the reduced density matrix of a spatial region. We work in the lowest Landau level and choose our region to intersect the boundary at arbitrary angles. The entanglement entropy (EE) contains a logarithmic contribution coming from the chiral edge modes, and matches the corresponding conformal field theory prediction. We uncover an additional contribution due to the boundary corners. We characterize the angle dependence of this boundary corner term, and compare it to the bulk corner EE. We further analyze the spatial structure of entanglement via the eigenstates associated with the reduced density matrix. The influence of the physical boundary and the region's geometry on the reduced density matrix is thus clarified. Finally, we test a bulk-boundary correspondence for the EE originally obtained for quantum critical systems such as conformal field theories in two spatial dimensions, and discuss the implications of our findings for other topological phases.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Breakdown of the v=1 integer quantum Hall effect in the single particle and collective localization regimes
    Huang, Haoyun
    Myers, S. A.
    Pfeiffer, L. N.
    West, K. W.
    Baldwin, K. W.
    Csathy, G. A.
    SOLID STATE COMMUNICATIONS, 2022, 353
  • [22] Anisotropic magnetotransport around the v=1 bilayer quantum Hall state
    Iwata, K
    Morino, M
    Suzuki, M
    Fukuda, A
    Sawada, A
    Ezawa, ZF
    Kumada, N
    Hirayama, Y
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (8-9) : 1556 - 1559
  • [23] Interlayer quantum coherence and anomalous stability of v=1 bilayer quantum Hall state
    Sawada, A
    Ezawa, ZF
    Ohno, H
    Horikoshi, Y
    Kishimoto, S
    Matsukura, F
    Ohno, Y
    Yasumoto, M
    Urayama, A
    PHYSICA B-CONDENSED MATTER, 1998, 249 : 836 - 840
  • [24] Geometric Resonance of Composite Fermions Near the ν=1/2 Fractional Quantum Hall State
    Mueed, M. A.
    Kamburov, D.
    Hasdemir, S.
    Shayegan, M.
    Pfeiffer, L. N.
    West, K. W.
    Baldwin, K. W.
    PHYSICAL REVIEW LETTERS, 2015, 114 (23)
  • [25] Edge-state critical behavior of the integer quantum Hall transition
    Puschmann, Martin
    Cain, Philipp
    Schreiber, Michael
    Vojta, Thomas
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (04): : 1003 - 1007
  • [26] Thermodynamic and tunneling density of states of the integer quantum Hall critical state
    Yang, SRE
    Wang, ZQ
    MacDonald, AH
    PHYSICAL REVIEW B, 2002, 65 (04) : 1 - 4
  • [27] Semiclassical analysis of edge state energies in the integer quantum Hall effect
    Avishai, Y.
    Montambaux, G.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (01): : 41 - 49
  • [28] Semiclassical analysis of edge state energies in the integer quantum Hall effect
    Y. Avishai
    G. Montambaux
    The European Physical Journal B, 2008, 66 : 41 - 49
  • [29] Edge-state critical behavior of the integer quantum Hall transition
    Martin Puschmann
    Philipp Cain
    Michael Schreiber
    Thomas Vojta
    The European Physical Journal Special Topics, 2021, 230 : 1003 - 1007
  • [30] Quantum graphs and the integer quantum Hall effect
    Goldman, N.
    Gaspard, P.
    PHYSICAL REVIEW B, 2008, 77 (02)