A machine learning-based framework for analyzing car brand styling

被引:2
|
作者
Li, Baojun [1 ]
Dong, Ying [1 ]
Wen, Zhijie [2 ]
Liu, Mingzeng [3 ]
Yang, Lei [1 ]
Song, Mingliang [1 ,4 ]
机构
[1] Dalian Univ Technol, Sch Automot Engn, Fac Vehicle Engn & Mech, Dalian 116024, Liaoning, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[3] Dalian Univ Technol, Sch Math & Phys Sci, Panjin, Peoples R China
[4] Dalian Univ Technol, Sch Architecture & Fine Art, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; styling analysis; car brand styling; styling consistency; classification; RECOGNITION; APPEARANCE; VEHICLE; MODEL;
D O I
10.1177/1687814018784429
中图分类号
O414.1 [热力学];
学科分类号
摘要
To avoid the requirement of expert knowledge in conventional methods for car styling analysis, this article proposes a machine learning-based method which requires no expert-engineered features for car frontal styling analysis. In this article, we aim to identify the group behaviors in car styling such as the degree of brand styling consistency among different automakers and car styling patterns. The brand styling consistency is considered as a group behavior in this article and is formulated as a brand classification problem. This classification problem is then solved by a machine learning method based on the PCANet for automatic feature encoding and the support vector machine for feature-based classification. The brand styling consistency can thus be measured based on the classification accuracy. To perform the analysis, a car frontal styling database with 23 brands is first built. To present discovered brand styling patterns in classification, a decoding method is proposed to map salient features for brand classification to original images for revelation of salient styling regions. To provide a direct perception in brand styling characteristics, frontal styling representatives of several brands are present as well. This study contributes to efficient identification of brand styling consistency and visualization of brand styling patterns without relying on expert experience.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] From substitution to redefinition: A framework of machine learning-based science assessment
    Zhai, Xiaoming
    C. Haudek, Kevin
    Shi, Lehong
    H. Nehm, Ross
    Urban-Lurain, Mark
    JOURNAL OF RESEARCH IN SCIENCE TEACHING, 2020, 57 (09) : 1430 - 1459
  • [32] Leveraging Classification and Detection of Malware: A Robust Machine Learning-Based Framework
    Sethi, Lingaraj
    Patra, Prashanta Kumar
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND COMMUNICATION SYSTEMS, ICACECS 2021, 2022, : 299 - 306
  • [33] A machine learning-based hybrid recommender framework for smart medical systems
    Wei, Jianhua
    Yan, Honglin
    Shao, Xiaoli
    Zhao, Lili
    Han, Lin
    Yan, Peng
    Wang, Shengyu
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [34] A machine learning-based decision support framework for energy storage selection
    Li, Lanyu
    Zhou, Tianxun
    Li, Jiali
    Wang, Xiaonan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 412 - 422
  • [35] Hadoop–Spark Framework for Machine Learning-Based Smart Irrigation Planning
    Asmae El Mezouari
    Abdelaziz El Fazziki
    Mohammed Sadgal
    SN Computer Science, 2022, 3 (1)
  • [36] Machine Learning-Based Regression Framework to Predict Health Insurance Premiums
    Kaushik, Keshav
    Bhardwaj, Akashdeep
    Dwivedi, Ashutosh Dhar
    Singh, Rajani
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (13)
  • [37] HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems
    Newaz, A. K. M. Iqtidar
    Sikder, Amit Kumar
    Rahman, Mohammad Ashiqur
    Uluagac, A. Selcuk
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 389 - 396
  • [38] Towards A Machine Learning-Based Framework For Automated Design of Networking Protocols
    Pasandi, Hannaneh Barahouei
    2019 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2019, : 433 - 434
  • [39] Identifying localized amenities for gentrification using a machine learning-based framework
    Zeng, Jin
    Yue, Yang
    Gao, Qili
    Gu, Yanyan
    Ma, Chenglin
    APPLIED GEOGRAPHY, 2022, 145
  • [40] Evolvability of Machine Learning-based Systems: An Architectural Design Decision Framework
    Leest, Joran
    Gerostathopoulos, Ilias
    Raibulet, Claudia
    2023 IEEE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION, ICSA-C, 2023, : 106 - 110