Wireless channel estimation and beamforming by using block sparse adaptive filtering

被引:2
|
作者
Mohanty, Basabadatta [1 ]
Sahoo, Harish Kumar [2 ]
Patnaik, Bijayananda [1 ]
机构
[1] IIIT, Dept Elect & Commun Engn, Bhubaneswar, India
[2] Veer Surendra Sai Univ Technol, Dept Elect & Telecommun Engn, Burla, Sambalpur, India
关键词
CSI; RLS; Sparse modeling; Channel capacity; Beamforming; Power delay profile; ALGORITHMS;
D O I
10.1007/s11760-020-01795-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Channel estimation normally provides information about indoor and outdoor fading channel statistics. The adaptive channel estimation models play an important role to generate the required channel state information (CSI) using the estimated channel coefficient vector. The CSI can be utilized to generate an angle vector that controls the steering mechanism of a beamformer. The beamformer provides better directive gain for linear antenna array and helps to improve the signal to noise ratio of the wireless receiver. The proposed estimation model process the transmitted quadrature amplitude modulation (QAM) data samples in the frequency domain. The adaptive design incorporates norm-based sparsity through block recursive least square (BRLS) algorithm to develop a computationally efficient model. The proposed sparse-FBRLS (Fast BRLS) model has simultaneously addressed the problems of channel estimation and beamforming in case of indoor and outdoor communication. The performance of the model is tested by different performance measures under practical mobility conditions.
引用
收藏
页码:769 / 777
页数:9
相关论文
共 50 条
  • [31] Block-based noise estimation using adaptive Gaussian filtering.
    Shin, DH
    Park, RH
    Yang, S
    Jung, JH
    ICCE: 2005 INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, DIGEST OF TECHNICAL PAPERS, 2005, : 263 - 264
  • [32] The impact of channel dispersion errors and equalisation filtering on subarrayed adaptive beamforming
    Medley, JC
    Dacke, FC
    Adams, FJ
    2005 IEEE International Radar, Conference Record, 2005, : 703 - 708
  • [33] Dynamic Channel Estimation and Power Allocation for Wireless Power Beamforming
    Yang, Gang
    Ho, Chin Keong
    Guan, Yong Liang
    2014 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2014, : 4650 - 4655
  • [34] On using channel prediction in adaptive beamforming systems
    Ramya, T. R.
    Bhashyam, Srikrishna
    2007 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS SOFTWARE & MIDDLEWARE, VOLS 1 AND 2, 2007, : 735 - +
  • [35] Markovian Adaptive Filtering Algorithm for Block-Sparse System Identification
    Habibi, Zahra
    Zayyani, Hadi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (08) : 3032 - 3036
  • [36] An Adaptive Matching Pursuit Algorithm for Sparse Channel Estimation
    Zhang, Yi
    Venkatesan, Ramachandran
    Dobre, Octavia A.
    Li, Cheng
    2015 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2015, : 626 - 630
  • [37] Adaptive Block Sparse Backtracking-Based Channel Estimation for Massive MIMO-OTFS Systems
    Wang, Han
    Chen, Qiulin
    Wang, Xianpeng
    Du, Wencai
    Li, Xingwang
    Nallanathan, Arumugam
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 673 - 682
  • [38] Optimal sparse channel estimation for unknown sparse level in wireless OFDM systems
    Daniel Vera-Gonzalez, J.
    Prieto-Guerrero, Alfonso
    Ghogho, Mounir
    Bonilla-Licea, Daniel
    2018 IEEE 10TH LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (IEEE LATINCOM), 2018,
  • [39] Adaptive filtering for fading channel estimation in WCDMA downlink
    Komulainen, P
    Haikola, V
    PIMRC 2000: 11TH IEEE INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, VOLS 1 AND 2, PROCEEDINGS, 2000, : 549 - 553
  • [40] Multiple Adaptive Frequency Filtering for OFDM Channel Estimation
    Rotoloni, Marco
    Butussi, Matteo
    Tomasin, Stefano
    Lattuada, Mauro
    Ruppert, Christian
    IEEE TRANSACTIONS ON BROADCASTING, 2009, 55 (04) : 826 - 830