Road Extraction in Mountainous Regions from High-Resolution Images Based on DSDNet and Terrain Optimization

被引:21
|
作者
Xu, Zeyu [1 ,2 ]
Shen, Zhanfeng [1 ,3 ]
Li, Yang [2 ,4 ]
Xia, Liegang [5 ]
Wang, Haoyu [1 ,2 ]
Li, Shuo [1 ,3 ]
Jiao, Shuhui [1 ,2 ]
Lei, Yating [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Natl Engn Res Ctr Geomat, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
[5] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
road extraction; deep learning; DSDNet; CLAHE; terrain constraints; REMOTE-SENSING IMAGES; NEURAL-NETWORK; AERIAL;
D O I
10.3390/rs13010090
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-quality road network information plays a vital role in regional economic development, disaster emergency management and land planning. To date, studies have primarily focused on sampling flat urban roads, while fewer have paid attention to road extraction in mountainous regions. Compared with road extraction in flat regions, road extraction in mountainous regions suffers more interference, due to shadows caused by mountains and road-like terrain. Furthermore, there are more practical problems involved when researching an entire region rather than at the sample level. To address the difficulties outlined regarding mountain road extraction, this paper takes Jiuzhaigou county in China as an example and studies road extraction in practical applications. Based on deep learning methods, we used a multistage optimization method to improve the extraction effect. First, we used the contrast limited adaptive histogram equalization (CLAHE) algorithm to attenuate the influence of mountain shadows and improve the quality of the image. Then the road was extracted by the improved DSDNet network. Finally, the terrain constraint method is used to reduce the false detection problem caused by the terrain factor, and after that the final road extraction result is obtained. To evaluate the effect of road extraction comprehensively, we used multiple data sources (i.e., points, raster and OpenStreetMap data) in different evaluation schemes to verify the accuracy of the road extraction results. The accuracy of our method for the three schemes was 0.8631, 0.8558 and 0.8801, which is higher than other methods have obtained. The results show that our method can effectively solve the interference of shadow and terrain encountered in road extraction over mountainous regions, significantly improving the effect of road extraction.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [21] Rural Road Extraction from High-Resolution Remote Sensing Images Based on Geometric Feature Inference
    Liu, Jian
    Qin, Qiming
    Li, Jun
    Li, Yunpeng
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2017, 6 (10):
  • [22] ROAD EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGES
    Ozkaya, M.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION IV, 2012, 39-B4 : 143 - 148
  • [23] Road Extraction from High-Resolution Orthophoto Images Using Convolutional Neural Network
    Abolfazl Abdollahi
    Biswajeet Pradhan
    Nagesh Shukla
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 569 - 583
  • [24] Road extraction from high-resolution satellite images using level set methods
    Ma, Zhen
    Wu, Ji-Tao
    Luo, Zhong-Hua
    COMPUTATIONAL MODELLING OF OBJECTS REPRESENTED IN IMAGES: FUNDAMENTALS, METHODS AND APPLICATIONS, 2007, : 261 - 266
  • [25] Lane-Level Road Extraction from High-Resolution Optical Satellite Images
    Dai, Jiguang
    Zhu, Tingting
    Zhang, Yilei
    Ma, Rongchen
    Li, Wantong
    REMOTE SENSING, 2019, 11 (22)
  • [26] Road Extraction from High-Resolution Orthophoto Images Using Convolutional Neural Network
    Abdollahi, Abolfazl
    Pradhan, Biswajeet
    Shukla, Nagesh
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (03) : 569 - 583
  • [27] Extraction of Stream Channels in High-Resolution Digital Terrain Images Using Morphology
    Cho, Hyun-chong
    Srinivasan, Sridhar
    Sedighi, Ali
    Slatton, K. C.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1078 - +
  • [28] High-Resolution Observations of Transport and Exchange Processes in Mountainous Terrain
    Emeis, Stefan
    Kalthoff, Norbert
    Adler, Bianca
    Pardyjak, Eric
    Paci, Alexandre
    Junkermann, Wolfgang
    ATMOSPHERE, 2018, 9 (12)
  • [29] A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images
    Liu, Ruyi
    Wu, Junhong
    Lu, Wenyi
    Miao, Qiguang
    Zhang, Huan
    Liu, Xiangzeng
    Lu, Zixiang
    Li, Long
    REMOTE SENSING, 2024, 16 (12)
  • [30] Semiautomatic Road Extraction Framework Based on Shape Features and LS-SVM from High-Resolution Images
    Pramod Kumar Soni
    Navin Rajpal
    Rajesh Mehta
    Journal of the Indian Society of Remote Sensing, 2020, 48 : 513 - 524