Road Extraction in Mountainous Regions from High-Resolution Images Based on DSDNet and Terrain Optimization

被引:21
|
作者
Xu, Zeyu [1 ,2 ]
Shen, Zhanfeng [1 ,3 ]
Li, Yang [2 ,4 ]
Xia, Liegang [5 ]
Wang, Haoyu [1 ,2 ]
Li, Shuo [1 ,3 ]
Jiao, Shuhui [1 ,2 ]
Lei, Yating [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Natl Engn Res Ctr Geomat, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
[5] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
road extraction; deep learning; DSDNet; CLAHE; terrain constraints; REMOTE-SENSING IMAGES; NEURAL-NETWORK; AERIAL;
D O I
10.3390/rs13010090
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
High-quality road network information plays a vital role in regional economic development, disaster emergency management and land planning. To date, studies have primarily focused on sampling flat urban roads, while fewer have paid attention to road extraction in mountainous regions. Compared with road extraction in flat regions, road extraction in mountainous regions suffers more interference, due to shadows caused by mountains and road-like terrain. Furthermore, there are more practical problems involved when researching an entire region rather than at the sample level. To address the difficulties outlined regarding mountain road extraction, this paper takes Jiuzhaigou county in China as an example and studies road extraction in practical applications. Based on deep learning methods, we used a multistage optimization method to improve the extraction effect. First, we used the contrast limited adaptive histogram equalization (CLAHE) algorithm to attenuate the influence of mountain shadows and improve the quality of the image. Then the road was extracted by the improved DSDNet network. Finally, the terrain constraint method is used to reduce the false detection problem caused by the terrain factor, and after that the final road extraction result is obtained. To evaluate the effect of road extraction comprehensively, we used multiple data sources (i.e., points, raster and OpenStreetMap data) in different evaluation schemes to verify the accuracy of the road extraction results. The accuracy of our method for the three schemes was 0.8631, 0.8558 and 0.8801, which is higher than other methods have obtained. The results show that our method can effectively solve the interference of shadow and terrain encountered in road extraction over mountainous regions, significantly improving the effect of road extraction.
引用
收藏
页码:1 / 19
页数:18
相关论文
共 50 条
  • [1] Road Extraction From High-Resolution Satellite Images Based on Multiple Descriptors
    Dai, Jiguang
    Zhu, Tingting
    Wang, Yang
    Ma, Rongchen
    Fang, Xinxin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 227 - 240
  • [2] Road extraction from high-resolution remote sensing images based on HRNet
    Chen X.
    Liu Z.
    Zhou S.
    Yu H.
    Liu Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (04): : 1167 - 1173
  • [3] Road extraction from high-resolution remote sensing images based on characteristics
    Yu, Jie
    Qin, Huiling
    Yan, Qin
    Tan, Ming
    Zhang, Guoning
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [4] Road Information Extraction from High-Resolution Remote Sensing Images Based on Road Reconstruction
    Zhou, Tingting
    Sun, Chenglin
    Fu, Haoyang
    REMOTE SENSING, 2019, 11 (01)
  • [5] Road Extraction from High-resolution Remote Sensing Images Based on Synthetical Characteristics
    Chen, Yongsheng
    Hong, Zhijia
    He, Qun
    Ma, Hongbin
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 828 - 831
  • [6] Automatic extraction of road seeds from high-resolution aerial images
    Dal-Poz, AP
    Do Vale, GM
    Zanin, RB
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (03): : 509 - 520
  • [7] Urban road extraction from high-resolution optical satellite images
    Long, H
    Zhao, ZM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (22) : 4907 - 4921
  • [8] Urban Road Extraction from High-Resolution Optical Satellite Images
    Naouai, Mohamed
    Hamouda, Atef
    Weber, Christiane
    IMAGE ANALYSIS AND RECOGNITION, 2010, PT II, PROCEEDINGS, 2010, 6112 : 420 - +
  • [9] Urban Road Extraction from High-resolution Remote Sensing Images Based on Semantic Model
    Zhang, Lianjun
    Zhang, Jing
    Zhang, Dapeng
    Hou, Xiaohui
    Yang, Gang
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [10] Road extraction from high-resolution remote sensing images based on multiple information fusion
    Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
    不详
    不详
    Cehui Xuebao, 2008, 2 (178-184):