On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State

被引:14
|
作者
Wei, Lu [1 ]
机构
[1] Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA
来源
ENTROPY | 2019年 / 21卷 / 05期
关键词
entanglement entropy; quantum information theory; random matrix theory; variance; AVERAGE ENTROPY; SUMMATION METHODS; PAGES CONJECTURE; MOMENT SERIES; PROOF;
D O I
10.3390/e21050539
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Tsallis entropy is a useful one-parameter generalization to the standard von Neumann entropy in quantum information theory. In this work, we study the variance of the Tsallis entropy of bipartite quantum systems in a random pure state. The main result is an exact variance formula of the Tsallis entropy that involves finite sums of some terminating hypergeometric functions. In the special cases of quadratic entropy and small subsystem dimensions, the main result is further simplified to explicit variance expressions. As a byproduct, we find an independent proof of the recently proven variance formula of the von Neumann entropy based on the derived moment relation to the Tsallis entropy.
引用
收藏
页数:13
相关论文
共 50 条