On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State

被引:14
|
作者
Wei, Lu [1 ]
机构
[1] Univ Michigan, Dept Elect & Comp Engn, Dearborn, MI 48128 USA
来源
ENTROPY | 2019年 / 21卷 / 05期
关键词
entanglement entropy; quantum information theory; random matrix theory; variance; AVERAGE ENTROPY; SUMMATION METHODS; PAGES CONJECTURE; MOMENT SERIES; PROOF;
D O I
10.3390/e21050539
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Tsallis entropy is a useful one-parameter generalization to the standard von Neumann entropy in quantum information theory. In this work, we study the variance of the Tsallis entropy of bipartite quantum systems in a random pure state. The main result is an exact variance formula of the Tsallis entropy that involves finite sums of some terminating hypergeometric functions. In the special cases of quadratic entropy and small subsystem dimensions, the main result is further simplified to explicit variance expressions. As a byproduct, we find an independent proof of the recently proven variance formula of the von Neumann entropy based on the derived moment relation to the Tsallis entropy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Capacity of entanglement in random pure state
    Okuyama, Kazumi
    PHYSICS LETTERS B, 2021, 820
  • [2] Tsallis entropy and entanglement constraints in multiqubit systems
    Kim, Jeong San
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [3] Exact and asymptotic measures of multipartite pure-state entanglement
    Bennett, CH
    Popescu, S
    Rohrlich, D
    Smolin, JA
    Thapliyal, AV
    PHYSICAL REVIEW A, 2001, 63 (01):
  • [4] Exact and asymptotic measures of multipartite pure-state entanglement
    Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63):
  • [5] Increasing of entanglement entropy from pure to random quantum critical chains
    Santachiara, Raoul
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [6] Exact variance of von Neumann entanglement entropy over the Bures-Hall measure
    Wei, Lu
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [7] Phase Transitions in the Distribution of Bipartite Entanglement of a Random Pure State
    Nadal, Celine
    Majumdar, Satya N.
    Vergassola, Massimo
    PHYSICAL REVIEW LETTERS, 2010, 104 (11)
  • [8] Entanglement in random pure states: spectral density and average von Neumann entropy
    Kumar, Santosh
    Pandey, Akhilesh
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (44)
  • [9] Exact minimum eigenvalue distribution of an entangled random pure state
    Majumdar, Satya N.
    Bohigas, Oriol
    Lakshminarayan, Arul
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (01) : 33 - 49
  • [10] Exact Minimum Eigenvalue Distribution of an Entangled Random Pure State
    Satya N. Majumdar
    Oriol Bohigas
    Arul Lakshminarayan
    Journal of Statistical Physics, 2008, 131 : 33 - 49