Landau-Lifshitz-Bloch equation for domain wall motion in antiferromagnets

被引:13
|
作者
Chen, Z. Y. [1 ,2 ]
Yan, Z. R. [1 ,2 ]
Qin, M. H. [1 ,2 ]
Liu, J-M [1 ,2 ,3 ,4 ]
机构
[1] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[3] Nanjing Univ, Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanjing Univ, Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
关键词
D O I
10.1103/PhysRevB.99.214436
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we derive the Landau-Lifshitz-Bloch equation accounting for the multidomain antiferromagnetic (AFM) lattice at finite temperature, in order to investigate the domain wall motion, the core issue for AFM spintronics. The continuity equation of the staggered magnetization is obtained using the continuum approximation, allowing an analytical calculation of the domain wall dynamics. The influence of temperature on the static domain wall profile is investigated, and the analytical calculations agree well with the numerical simulations on temperature-gradient-driven domain wall motion, confirming the validity of this theory. Furthermore, the decrease of the acceleration and the increase of the saturation velocity of the domain wall with the increase of temperature are uncovered for a fixed gradient. Moreover, it is worth noting that this theory could be also applied to dynamics of various wall motions in an AFM system. The present theory represents a comprehensive approach to the domain wall dynamics in AFM materials, a crucial step toward the development of AFM spintronics.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ON THE SMOOTH SOLUTIONS OF LANDAU-LIFSHITZ-BLOCH EQUATIONS OF ANTIFERROMAGNETS
    Wang, Yu-Feng
    Guo, Bo-Ling
    Zeng, Ming
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (03) : 837 - 849
  • [2] Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation
    Schieback, C.
    Hinzke, D.
    Klaeui, M.
    Nowak, U.
    Nielaba, P.
    [J]. PHYSICAL REVIEW B, 2009, 80 (21):
  • [3] Landau-Lifshitz-Bloch equation for ferrimagnetic materials
    Atxitia, U.
    Nieves, P.
    Chubykalo-Fesenko, O.
    [J]. PHYSICAL REVIEW B, 2012, 86 (10):
  • [4] Landau-Lifshitz-Bloch equation on Riemannian manifold
    Zonglin Jia
    Boling Guo
    [J]. Frontiers of Mathematics in China, 2019, 14 : 45 - 76
  • [5] Stochastic form of the Landau-Lifshitz-Bloch equation
    Evans, R. F. L.
    Hinzke, D.
    Atxitia, U.
    Nowak, U.
    Chantrell, R. W.
    Chubykalo-Fesenko, O.
    [J]. PHYSICAL REVIEW B, 2012, 85 (01)
  • [6] SMOOTH SOLUTIONS OF THE LANDAU-LIFSHITZ-BLOCH EQUATION
    Li, Qiaoxin
    Guo, Boling
    Zeng, Ming
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2713 - 2721
  • [7] The Energy Conservation of the Landau-Lifshitz-Bloch Equation
    Qiuju Xu
    Huaqiao Wang
    [J]. Acta Mathematica Scientia, 2023, 43 : 1841 - 1851
  • [8] The Landau-Lifshitz-Bloch equation for quantum spin
    Nieves, P.
    Serantes, D.
    Chubykalo-Fesenko, O.
    [J]. ULTRAFAST MAGNETISM I, 2015, 159 : 140 - 142
  • [9] The Landau-Lifshitz-Bloch Equation in the Thin Film
    He, Yuxun
    Wang, Huaqiao
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
  • [10] Landau-Lifshitz-Bloch equation on Riemannian manifold
    Jia, Zonglin
    Guo, Boling
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 45 - 76