Landau-Lifshitz-Bloch equation for ferrimagnetic materials

被引:74
|
作者
Atxitia, U. [1 ]
Nieves, P. [1 ]
Chubykalo-Fesenko, O. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 10期
关键词
MAGNETIZATION REVERSAL;
D O I
10.1103/PhysRevB.86.104414
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive the Landau-Lifshitz-Bloch (LLB) equation for a two-component magnetic system valid up to the Curie temperature. As an example, we consider disordered GdFeCo ferrimagnet where the ultrafast optically induced magnetization switching under the action of heat alone has been recently reported. The two-component LLB equation contains the longitudinal relaxation terms responding to the exchange fields from the proper and the neighboring sublattices. We show that the sign of the longitudinal relaxation rate at high temperatures can change depending on the dynamical magnetization value and a dynamical polarization of one material by another can occur. We discuss the differences between the LLB and the Baryakhtar equations, recently used to explain the ultrafast switching in ferrimagnets. The two-component LLB equation forms the basis for the large-scale micromagnetic modeling of nanostructures at high temperatures and ultrashort time scales.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Landau-Lifshitz-Bloch equation for ferrimagnetic metals
    Gridnev, V. N.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 538 (538)
  • [2] Stochastic ferrimagnetic Landau-Lifshitz-Bloch equation for finite magnetic structures
    Vogler, Christoph
    Abert, Claas
    Bruckner, Florian
    Suess, Dieter
    [J]. PHYSICAL REVIEW B, 2019, 100 (05)
  • [3] Landau-Lifshitz-Bloch equation on Riemannian manifold
    Zonglin Jia
    Boling Guo
    [J]. Frontiers of Mathematics in China, 2019, 14 : 45 - 76
  • [4] Stochastic form of the Landau-Lifshitz-Bloch equation
    Evans, R. F. L.
    Hinzke, D.
    Atxitia, U.
    Nowak, U.
    Chantrell, R. W.
    Chubykalo-Fesenko, O.
    [J]. PHYSICAL REVIEW B, 2012, 85 (01)
  • [5] SMOOTH SOLUTIONS OF THE LANDAU-LIFSHITZ-BLOCH EQUATION
    Li, Qiaoxin
    Guo, Boling
    Zeng, Ming
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2713 - 2721
  • [6] The Energy Conservation of the Landau-Lifshitz-Bloch Equation
    Qiuju Xu
    Huaqiao Wang
    [J]. Acta Mathematica Scientia, 2023, 43 : 1841 - 1851
  • [7] The Landau-Lifshitz-Bloch equation for quantum spin
    Nieves, P.
    Serantes, D.
    Chubykalo-Fesenko, O.
    [J]. ULTRAFAST MAGNETISM I, 2015, 159 : 140 - 142
  • [8] The Landau-Lifshitz-Bloch Equation in the Thin Film
    He, Yuxun
    Wang, Huaqiao
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2023, 25 (03)
  • [9] Landau-Lifshitz-Bloch equation on Riemannian manifold
    Jia, Zonglin
    Guo, Boling
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (01) : 45 - 76
  • [10] Weak solutions of the Landau-Lifshitz-Bloch equation
    Kim Ngan Le
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) : 6699 - 6717