Decomposition of a Multiobjective Optimization Problem into a Number of Simple Multiobjective Subproblems

被引:601
|
作者
Liu, Hai-Lin [1 ]
Gu, Fangqing [1 ]
Zhang, Qingfu [2 ]
机构
[1] Guangdong Univ Technol, Guangzhou 510520, Guangdong, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
关键词
Decomposition; hybrid algorithms; multiobjective optimization; ALGORITHM;
D O I
10.1109/TEVC.2013.2281533
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter suggests an approach for decomposing a multiobjective optimization problem (MOP) into a set of simple multiobjective optimization subproblems. Using this approach, it proposes MOEA/D-M2M, a new version of multiobjective optimization evolutionary algorithm-based decomposition. This proposed algorithm solves these subproblems in a collaborative way. Each subproblem has its own population and receives computational effort at each generation. In such a way, population diversity can be maintained, which is critical for solving some MOPs. Experimental studies have been conducted to compare MOEA/D-M2M with classic MOEA/D and NSGA-II. This letter argues that population diversity is more important than convergence in multiobjective evolutionary algorithms for dealing with some MOPs. It also explains why MOEA/D-M2M performs better.
引用
收藏
页码:450 / 455
页数:6
相关论文
共 50 条
  • [41] Genetic symbiosis algorithm for multiobjective optimization problem
    Mao, JM
    Hirasawa, K
    Hu, JL
    Murata, J
    [J]. IEEE RO-MAN 2000: 9TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, 2000, : 137 - 142
  • [42] A novel evolution strategy for multiobjective optimization problem
    Yang, SM
    Shao, DG
    Luo, YJ
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (02) : 850 - 873
  • [43] Multiobjective duality for the Markowitz portfolio optimization problem
    Wanka, G
    [J]. CONTROL AND CYBERNETICS, 1999, 28 (04): : 691 - 702
  • [44] Multiobjective Optimization for the Stochastic Physical Search Problem
    Hudack, Jeffrey
    Gemelli, Nathaniel
    Brown, Daniel
    Loscalzo, Steven
    Oh, Jae C.
    [J]. CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 212 - 221
  • [45] Multiobjective optimization problem of dieless incremental forming
    Laboratoire de Génie Mécanique , Ecole Nationale d'Ingénieurs de Monastir , Université de Monastir, Avenue Ibn Eljazzar, Monastir
    5019, Tunisia
    [J]. Key Eng Mat, (1078-1088):
  • [46] A BENDERS DECOMPOSITION APPROACH TO THE MULTIOBJECTIVE DISTRIBUTION PLANNING PROBLEM
    KAGAN, N
    ADAMS, RN
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1993, 15 (05) : 259 - 271
  • [47] Multiobjective Cloud Particle Optimization Algorithm Based on Decomposition
    Li, Wei
    Wang, Lei
    Jiang, Qiaoyong
    Hei, Xinhong
    Wang, Bin
    [J]. ALGORITHMS, 2015, 8 (02) : 157 - 176
  • [48] ANOVA-MOP: ANOVA DECOMPOSITION FOR MULTIOBJECTIVE OPTIMIZATION
    Tabatabaei, Mohammad
    Lovison, Alberto
    Tan, Matthias
    Hartikainen, Markus
    Miettinen, Kaisa
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 3260 - 3289
  • [49] Faster Convergence in Multiobjective Optimization Algorithms Based on Decomposition
    Lavinas, Yuri
    Ladeira, Marcelo
    Aranha, Claus
    [J]. EVOLUTIONARY COMPUTATION, 2022, 30 (03) : 355 - 380
  • [50] A Multiobjective Brain Storm Optimization Algorithm Based on Decomposition
    Dai, Cai
    Lei, Xiujuan
    [J]. COMPLEXITY, 2019, 2019