Decomposition of a Multiobjective Optimization Problem into a Number of Simple Multiobjective Subproblems

被引:601
|
作者
Liu, Hai-Lin [1 ]
Gu, Fangqing [1 ]
Zhang, Qingfu [2 ]
机构
[1] Guangdong Univ Technol, Guangzhou 510520, Guangdong, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
关键词
Decomposition; hybrid algorithms; multiobjective optimization; ALGORITHM;
D O I
10.1109/TEVC.2013.2281533
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter suggests an approach for decomposing a multiobjective optimization problem (MOP) into a set of simple multiobjective optimization subproblems. Using this approach, it proposes MOEA/D-M2M, a new version of multiobjective optimization evolutionary algorithm-based decomposition. This proposed algorithm solves these subproblems in a collaborative way. Each subproblem has its own population and receives computational effort at each generation. In such a way, population diversity can be maintained, which is critical for solving some MOPs. Experimental studies have been conducted to compare MOEA/D-M2M with classic MOEA/D and NSGA-II. This letter argues that population diversity is more important than convergence in multiobjective evolutionary algorithms for dealing with some MOPs. It also explains why MOEA/D-M2M performs better.
引用
收藏
页码:450 / 455
页数:6
相关论文
共 50 条
  • [1] Decomposing a Multiobjective Optimization Problem into a Number of Reduced-Dimension Multiobjective Subproblems Using Tomographic Scanning
    Fan, Zhun
    Hu, Kaiwen
    Yin, Haibin
    Li, Wenji
    Lin, Huibiao
    [J]. 2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2015, : 71 - 75
  • [2] Efficiency for multiobjective multidisciplinary optimization problems with quasiseparable subproblems
    Gardenghi, Melissa
    Wiecek, Margaret M.
    [J]. OPTIMIZATION AND ENGINEERING, 2012, 13 (02) : 293 - 318
  • [3] Efficiency for multiobjective multidisciplinary optimization problems with quasiseparable subproblems
    Melissa Gardenghi
    Margaret M. Wiecek
    [J]. Optimization and Engineering, 2012, 13 : 293 - 318
  • [4] Constrained Subproblems in a Decomposition-Based Multiobjective Evolutionary Algorithm
    Wang, Luping
    Zhang, Qingfu
    Zhou, Aimin
    Gong, Maoguo
    Jiao, Licheng
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (03) : 475 - 480
  • [5] On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem
    Schuetze, Oliver
    Lara, Adriana
    Coello Coello, Carlos A.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (04) : 444 - 455
  • [6] Choose Appropriate Subproblems for Collaborative Modeling in Expensive Multiobjective Optimization
    Wang, Zhenkun
    Zhang, Qingfu
    Ong, Yew-Soon
    Yao, Shunyu
    Liu, Haitao
    Luo, Jianping
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (01) : 483 - 496
  • [7] Robust Multiobjective Optimization using Regression Models and Linear Subproblems
    Goulart, Fillipe
    Borges, Silvio T.
    Takahashi, Fernanda C.
    Campelo, Felipe
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 569 - 576
  • [8] A multiobjective differential evolution based on decomposition for multiobjective optimization with variable linkages
    Li, Hui
    Zhang, Qingfu
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS, 2006, 4193 : 583 - 592
  • [9] Biased Multiobjective Optimization and Decomposition Algorithm
    Li, Hui
    Zhang, Qingfu
    Deng, Jingda
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) : 52 - 66
  • [10] Integration of Preferences in Decomposition Multiobjective Optimization
    Li, Ke
    Chen, Renzhi
    Min, Geyong
    Yao, Xin
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (12) : 3359 - 3370