Solutions for quasilinear Schrodinger equations via the Nehari method

被引:433
|
作者
Liu, JQ
Wang, YQ
Wang, ZQ [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] Fujian Normal Univ, Sch Math & Comp Sci, Fujian, Peoples R China
[3] Peking Univ, Dept Math, Beijing 100871, Peoples R China
关键词
standing waves; quasilinear Schrodinger equations; one-sign and nodal solutions; the Nehari method;
D O I
10.1081/PDE-120037335
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a class of quasilinear Schrodinger equations we establish the existence of both one-sign and nodal ground states of soliton type solutions by the Nehari method.
引用
收藏
页码:879 / 901
页数:23
相关论文
共 50 条
  • [31] Nodal soliton solutions for generalized quasilinear Schrodinger equations
    Deng, Yinbin
    Peng, Shuangjie
    Wang, Jixiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
  • [32] Positive solutions for a class of supercritical quasilinear Schrodinger equations
    Deng, Yin
    Zhang, Xiaojing
    Jia, Gao
    AIMS MATHEMATICS, 2022, 7 (04): : 6565 - 6582
  • [33] NONRADIAL SOLUTIONS OF QUASILINEAR SCHRODINGER EQUATIONS WITH GENERAL NONLINEARITY
    Jing, Yongtao
    Liu, Haidong
    Liu, Zhaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 781 - 800
  • [34] Symmetric and nonsymmetric solutions for a class of quasilinear Schrodinger equations
    Severo, Uberlandio B.
    ADVANCED NONLINEAR STUDIES, 2008, 8 (02) : 375 - 389
  • [35] Multiple positive solutions for a quasilinear system of Schrodinger equations
    Figueiredo, Giovany A.
    Furtado, Marcelo F.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (03): : 309 - 333
  • [36] On the existence of standing wave solutions to quasilinear Schrodinger equations
    Moameni, A
    NONLINEARITY, 2006, 19 (04) : 937 - 957
  • [37] Existence of solutions for a class of quasilinear Schrodinger equations on R
    Wang, Da-Bin
    Yang, Kuo
    BOUNDARY VALUE PROBLEMS, 2015, : 1 - 5
  • [38] ANTISYMMETRIC SOLUTIONS FOR A CLASS GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS
    Gamboa, Janete Soares
    Zhou, Jiazheng
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (01): : 29 - 45
  • [39] Uniqueness of the ground state solutions of quasilinear Schrodinger equations
    Adachi, Shinji
    Watanabe, Tatsuya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) : 819 - 833
  • [40] Asymptotic behavior of multiple solutions for quasilinear Schrodinger equations
    Zhang, Xian
    Huang, Chen
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (64) : 1 - 28