LOWER BOUNDS FOR TAILS OF SUMS OF INDEPENDENT SYMMETRIC RANDOM VARIABLES

被引:1
|
作者
Mattner, L. [1 ]
机构
[1] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
关键词
Bernoulli convolution; concentration function; deviation probabilities; Poisson binomial distribution; symmetric three point convolution; unimodality; CONVEX-SETS;
D O I
10.1137/S0040585X97983651
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The approach of Kleitman [Adv. in Math., 5 (1970), pp. 155-157] and Kanter [J. Multivariate Anal., 6 (1976), pp. 222-236] to multivariate concentration function inequalities is generalized in order to obtain for deviation probabilities of sums of independent symmetric random variables a lower bound depending only on deviation probabilities of the terms of the sum. This bound is optimal up to discretization effects, improves on a result of Nagaev [Theory Probab. Appl., 46 (2002), pp. 728-735], and complements the comparison theorems of Birnbaum [ Ann. Math. Statist., 19 (1948), pp. 76-81] and Pruss [Ann. Inst. H. Poincare, 33 (1997), pp. 651-671]). Birnbaum's theorem for unimodal random variables is extended to the lattice case.
引用
收藏
页码:334 / 339
页数:6
相关论文
共 50 条