Characterization by Scanning Precession Electron Diffraction of an Aggregate of Bridgmanite and Ferropericlase Deformed at HP-HT

被引:15
|
作者
Nzogang, B. C. [1 ]
Bouquerel, J. [1 ]
Cordier, P. [1 ]
Mussi, A. [1 ]
Girard, J. [2 ]
Karato, S. [2 ]
机构
[1] Univ Lille, CNRS, INRA, ENSCL,UMR 8207 UMET, Lille, France
[2] Yale Univ, Dept Geol & Geophys, New Haven, CT USA
来源
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS | 2018年 / 19卷 / 03期
基金
欧洲研究理事会;
关键词
LOWER MANTLE; BACKSCATTER DIFFRACTION; MGSIO3; PEROVSKITE; DISLOCATION-STRUCTURE; TRANSMISSION EBSD; 30; GPA; DEFORMATION; OLIVINE; EVOLUTION; PRESSURE;
D O I
10.1002/2017GC007244
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Scanning precession electron diffraction is an emerging promising technique for mapping phases and crystal orientations with short acquisition times (10-20 ms/pixel) in a transmission electron microscope similarly to the Electron Backscattered Diffraction (EBSD) or Transmission Kikuchi Diffraction (TKD) techniques in a scanning electron microscope. In this study, we apply this technique to the characterization of deformation microstructures in an aggregate of bridgmanite and ferropericlase deformed at 27 GPa and 2,130 K. Such a sample is challenging for microstructural characterization for two reasons: (i) the bridgmanite is very unstable under electron irradiation, (ii) under high stress conditions, the dislocation density is so large that standard characterization by diffraction contrast are limited, or impossible. Here we show that detailed analysis of intracrystalline misorientations sheds some light on the deformation mechanisms of both phases. In bridgmanite, deformation is accommodated by localized, amorphous, shear deformation lamellae whereas ferropericlase undergoes large strains leading to grain elongation in response to intense dislocation activity with no evidence for recrystallization. Plastic strain in ferropericlase can be semiquantitatively assessed by following kernel average misorientation distributions. Plain Language Summary We present a microstructural characterization of a mineralogical assemblage of the lower mantle deformed in the pressure-temperature conditions of the upper most lower mantle. We show that the magnesium silicate perovskite named bridgmanite is stiffer and deforms only along very localized shear bands. The magnesium oxide ferropericlase is much more ductile and takes most of the plastic strain.
引用
收藏
页码:582 / 594
页数:13
相关论文
共 50 条
  • [11] Preparation of a macrocrystalline pressure calibrant SrB4O7 : Sm2+ suitable for the HP-HT powder diffraction
    Rashchenko, Sergey V.
    Likhacheva, Anna Yu.
    Bekker, Tatyana B.
    HIGH PRESSURE RESEARCH, 2013, 33 (04) : 720 - 724
  • [12] Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes
    Plana-Ruiz, S.
    Portillo, J.
    Estrade, S.
    Peiro, F.
    Kolb, Ute
    Nicolopoulos, S.
    ULTRAMICROSCOPY, 2018, 193 : 39 - 51
  • [13] Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction
    Daniel Ugarte
    Luiz H. G. Tizei
    Monica A. Cotta
    Caterina Ducati
    Paul A. Midgley
    Alexander S. Eggeman
    Nano Research, 2019, 12 : 939 - 946
  • [14] 3D scanning precession electron diffraction analysis of nanodomains in thin films
    Passuti, S.
    Rauch, E. F.
    David, A.
    Boullay, P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E624 - E624
  • [15] Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction
    Ugarte, Daniel
    Tizei, Luiz H. G.
    Cotta, Monica A.
    Ducati, Caterina
    Midgley, Paul A.
    Eggeman, Alexander S.
    NANO RESEARCH, 2019, 12 (04) : 939 - 946
  • [16] Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel
    Lillo, T. M.
    van Rooyen, I. J.
    Wu, Y. Q.
    NUCLEAR ENGINEERING AND DESIGN, 2016, 305 : 277 - 283
  • [17] Scanning precession electron diffraction data analysis approaches for phase mapping of precipitates in aluminium alloys
    Thronsen, E.
    Bergh, T.
    Thorsen, T. I.
    Christiansen, E. F.
    Frafjord, J.
    Crout, P.
    van Helvoort, A. T. J.
    Midgley, P. A.
    Holmestad, R.
    ULTRAMICROSCOPY, 2024, 255
  • [18] Scanning precession electron diffraction data analysis approaches for phase mapping of precipitates in aluminium alloys
    Thronsen, E.
    Bergh, T.
    Thorsen, T.I.
    Christiansen, E.F.
    Frafjord, J.
    Crout, P.
    van Helvoort, A.T.J.
    Midgley, P.A.
    Holmestad, R.
    Ultramicroscopy, 2024, 255
  • [19] Application of precession electron diffraction to the characterization of (021) twinning in pseudo-hexagonal coesite
    Jacob, Damien
    Cordier, Patrick
    Morniroli, Jean-Paul
    Schertl, Hans-Peter
    AMERICAN MINERALOGIST, 2009, 94 (5-6) : 684 - 692
  • [20] A Comparison of a Direct Electron Detector and a High-Speed Video Camera for a Scanning Precession Electron Diffraction Phase and Orientation Mapping
    MacLaren, Ian
    Frutos-Myro, Enrique
    McGrouther, Damien
    McFadzean, Sam
    Weiss, Jon Karl
    Cosart, Doug
    Portillo, Joaquim
    Robins, Alan
    Nicolopoulos, Stavros
    Nebot del Busto, Eduardo
    Skogeby, Richard
    MICROSCOPY AND MICROANALYSIS, 2020, 26 (06) : 1110 - 1116