Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit

被引:0
|
作者
Ardia, David [1 ]
Hoogerheide, Lennart F. [2 ,3 ]
van Dijk, Herman K. [2 ,3 ]
机构
[1] Univ Fribourg, Dept Quantitat Econ, CH-1700 Fribourg, Switzerland
[2] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
[3] Erasmus Univ, Tinbergen Inst, NL-3000 DR Rotterdam, Netherlands
来源
JOURNAL OF STATISTICAL SOFTWARE | 2009年 / 29卷 / 03期
基金
瑞士国家科学基金会;
关键词
adaptive mixture; Student-t distributions; importance sampling; independence chain Metropolis-Hastings algorithm; Bayesian inference; R software; MODELS; GARCH; DENSITIES; INFERENCE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the R package AdMit which provides flexible functions to approximate a certain target distribution and to efficiently generate a sample of random draws from it, given only a kernel of the target density function. The core algorithm consists of the function AdMit which fits an adaptive mixture of Student-t distributions to the density of interest. Then, importance sampling or the independence chain Metropolis-Hastings algorithm is used to obtain quantities of interest for the target density, using the fitted mixture as the importance or candidate density. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling algorithm. The relevance of the package is shown in two examples. The first aims at illustrating in detail the use of the functions provided by the package in a bivariate bimodal distribution. The second shows the relevance of the adaptive mixture procedure through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-returns data. The methodology is compared to standard cases of importance sampling and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs approach.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 14 条
  • [1] AdMit: Adaptive Mixtures of Student-t Distributions
    Ardia, David
    Hoogerheide, Lennart F.
    van Dijk, Herman K.
    [J]. R JOURNAL, 2009, 1 (01): : 25 - 30
  • [2] EFFICIENT PROBABILITY ESTIMATION AND SIMULATION OF THE TRUNCATED MULTIVARIATE STUDENT-t DISTRIBUTION
    Botev, Zdravko I.
    L'Ecuyer, Pierre
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 380 - 391
  • [3] Approximate Noise-Adaptive Filtering Using Student-t Distributions
    Berntorp, Karl
    Di Cairano, Stefano
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2745 - 2750
  • [4] Bayesian Inference for State-Space Models With Student-t Mixture Distributions
    Zhang, Tianyu
    Zhao, Shunyi
    Luan, Xiaoli
    Liu, Fei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4435 - 4445
  • [5] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Lachos, Victor H.
    Cabral, Celso R. B.
    Prates, Marcos O.
    Dey, Dipak K.
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (01) : 123 - 152
  • [6] Flexible regression modeling for censored data based on mixtures of student-t distributions
    Víctor H. Lachos
    Celso R. B. Cabral
    Marcos O. Prates
    Dipak K. Dey
    [J]. Computational Statistics, 2019, 34 : 123 - 152
  • [7] A flexible prior distribution for Markov switching autoregressions with student-t errors
    Deschamps, Philippe J.
    [J]. JOURNAL OF ECONOMETRICS, 2006, 133 (01) : 153 - 190
  • [8] Finite mixture modeling of censored data using the multivariate Student-t distribution
    Lachos, Victor H.
    Lopez Moreno, Edgar J.
    Chen, Kun
    Barbosa Cabral, Celso Romulo
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 159 : 151 - 167
  • [9] Robust and Efficient Image Alignment Method Using the Student-t Distribution
    Zhou, Yifan
    Maskell, Simon
    [J]. PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), 2020, : 1255 - 1262
  • [10] An Improved Adaptive Navigation Algorithm Based on Adjustable Student-t distribution in an Urban Environment
    Zhang, Ying
    Yang, Zhe
    Zhao, Hongbo
    Yang, Tao
    Feng, Wenquan
    [J]. 4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161