Fall Detection Using Location Sensors and Accelerometers

被引:17
|
作者
Lustrek, Mitja [1 ]
Gjoreski, Hristijan [2 ]
Vega, Narciso Gonzalez [3 ]
Kozina, Simon [2 ]
Cvetkovic, Bozidara [2 ]
Mirchevska, Violeta [2 ]
Gams, Matjaz [2 ]
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, Ambient Intelligence Grp, Ljubljana, Slovenia
[2] Jozef Stefan Inst, Dept Intelligent Syst, Ljubljana, Slovenia
[3] Univ Jyvaskyla, Agora Ctr, Serv Sci Lab, SF-40351 Jyvaskyla, Finland
关键词
ACTIVITY RECOGNITION;
D O I
10.1109/MPRV.2015.84
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid aging of the world's population is driving the development of pervasive solutions for elder care. The Confidence system improves upon previous methods by combining location sensors, accelerometers, and context data to detect falls in real-life situations with elderly users.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 50 条
  • [31] Fall Detection and Personnel Tracking System Using Infrared Array Sensors
    Liu, Zhixin
    Yang, Ming
    Yuan, Yazhou
    Chan, Kit Yan
    IEEE SENSORS JOURNAL, 2020, 20 (16) : 9558 - 9566
  • [32] Fall detection in smart home environments using UWB sensors and unsupervised change detection
    Mokhtari G.
    Aminikhanghahi S.
    Zhang Q.
    Cook D.J.
    Journal of Reliable Intelligent Environments, 2018, 4 (3) : 131 - 139
  • [33] Development of an Enhanced Threshold-Based Fall Detection System Using Smartphones With Built-In Accelerometers
    Lee, Jin-Shyan
    Tseng, Hsuan-Han
    IEEE SENSORS JOURNAL, 2019, 19 (18) : 8293 - 8302
  • [34] Deep Learning Based Fall Detection Algorithms for Embedded Systems, Smartwatches, and IoT Devices Using Accelerometers
    Kraft, Dimitri
    Srinivasan, Karthik
    Bieber, Gerald
    TECHNOLOGIES, 2020, 8 (04)
  • [35] Evaluating the specifications of built-in accelerometers in smartphones on fall detection performance
    Chen, Kuang-Hsuan
    Hsu, Yu-Wei
    Yang, Jing-Jung
    Jaw, Fu-Shan
    INSTRUMENTATION SCIENCE & TECHNOLOGY, 2018, 46 (02) : 194 - 206
  • [36] Fall detection from a manual wheelchair: preliminary findings based on accelerometers using machine learning techniques
    Abou, Libak
    Fliflet, Alexander
    Presti, Peter
    Sosnoff, Jacob J.
    Mahajan, Harshal P.
    Frechette, Mikaela L.
    Rice, Laura A.
    ASSISTIVE TECHNOLOGY, 2023, 35 (06) : 523 - 531
  • [37] A Fall Detection Study on the Sensors Placement Location and a Rule-Based Multi-Thresholds Algorithm Using Both Accelerometer and Gyroscopes
    Jacob, Jerene
    Tam Nguyen
    Lie, Donald Y. C.
    Zupancic, Steven
    Bishara, J.
    Dentino, Andrew
    Banister, Ron E.
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 666 - 671
  • [38] Detection of impact location for composite stiffened panel using FBG sensors
    Park, S. O.
    Jang, B. W.
    Lee, Y. G.
    Kim, Y. Y.
    Kim, C. G.
    Park, C. Y.
    Lee, B. W.
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES III, PTS 1 AND 2, 2010, 123-125 : 895 - +
  • [39] Detection and location of PD activities using an array of fiber laser sensors
    Kung, Peter
    Wang, Lutang
    Comanici, Maria I.
    Chen, Lawrence R.
    CONFERENCE RECORD OF THE 2012 IEEE INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATION (ISEI), 2012, : 511 - 515
  • [40] Elderly Fall Detection and Location Tracking System Using Heterogeneous Wireless Networks
    Fung, Ng Ming
    Ann, Jackson Wong Sing
    Tung, Yew Hoe
    Kheau, Chung Seng
    Chekima, Ali
    2019 IEEE 9TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE), 2019, : 44 - 49