A review on the fatigue behaviour of AlSi10Mg alloy fabricated using laser powder bed fusion technique

被引:46
|
作者
Raja, A. [1 ]
Cheethirala, Srinivasa Rakesh [1 ]
Gupta, Pallavi [1 ]
Vasa, Nilesh J. [1 ]
Jayaganthan, R. [1 ]
机构
[1] Indian Inst Technol Madras, Dept Engn Design, Chennai, Tamil Nadu, India
关键词
Additive manufacturing; Laser powder bed fusion; AlSi10Mg alloy; Fatigue models; Microstructure; Fatigue; HIGH-CYCLE FATIGUE; MECHANICAL-PROPERTIES; LIFE PREDICTION; DEFECT SIZE; TENSILE PROPERTIES; SURFACE-ROUGHNESS; LAYER THICKNESS; ALUMINUM-ALLOYS; HEAT-TREATMENT; MELTING SLM;
D O I
10.1016/j.jmrt.2022.01.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) of AlSi10Mg alloy is widely studied for the aerospace and automotive applications. Considering safety over cost, fatigue life of the material is very critical for these applications. This article reviews the interrelationship between the LPBF process parameters-microstructure-crack initiation and crack growth mechanisms under fatigue loading conditions. It addresses current problems and potential opportunities in the fabrication of fatigue-resistant AlSi10Mg alloy for light weight structural applications. The methodology for mechanical testing techniques, specimen design guidelines, post manufacturing treatments, and other aspects of AM parts ought to be standardised. It is possible to standardise the LPBF process thorough understanding of the interrelationships among process parameters, structural aspects such as microstructure of solidified material, and mechanical properties of the fabricated part. The deformation and fracture mechanism during the cyclic loading of influences the fatigue resistance of AlSi10Mg alloy. Influence of these microstructural features, grain morphology, texture, pore size, shape distribution, and surface roughness on the fatigue properties are vital for any applications that prioritize safety over cost. The hierarchical microstructure in the LPBF processed material showed an interesting crack growth mechanism, this mechanism of crack growth is an important novelty of this work. The influence of process of sample removal and post processing on the fatigue properties are significantly control the fatigue properties. Heating the substrate of the built sample and certain post processing conditions were observed to relieve the stress in the as-built material. Post-heat treatment observed to improve the fatigue property of the selective laser melted AlSi10Mg alloy owing to the homogeneous redistribution of Si particle from the cellular boundaries and stress relief. Hence, in this review, the inter-relationship between the LPBF process parameters-microstructure-crack initiation and crack growth mechanisms under cyclic loads were studied in detail. The major aspects reviewed in this article include influence of process parameters on fatigue life and their interaction with the formation of defects. Further, specific factors dictating the fatigue characteristics in as-built and post processed AlSi10Mg alloy are elaborately discussed, concluded by fatigue models detailing the fatigue failure mechanisms.(c) 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1013 / 1029
页数:17
相关论文
共 50 条
  • [11] Characterization and Analysis of the Thermal Conductivity of AlSi10Mg Fabricated by Laser Powder Bed Fusion
    Elkholy, Ahmed
    Quinn, Paul
    Mhurchadha, Sinead M. Ui
    Raghavendra, Ramesh
    Kempers, Roger
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (10):
  • [12] Research on Surface Roughness of AlSi10Mg Parts Fabricated by Laser Powder Bed Fusion
    Li, Bao-Qiang
    Li, Zhonghua
    Bai, Peikang
    Liu, Bin
    Kuai, Zezhou
    METALS, 2018, 8 (07):
  • [13] Fatigue Improvement of AlSi10Mg Fabricated by Laser-Based Powder Bed Fusion through Heat Treatment
    Sajadi, Felix
    Tiemann, Jan-Marc
    Bandari, Nooshin
    Darabi, Ali Cheloee
    Mola, Javad
    Schmauder, Siegfried
    METALS, 2021, 11 (05)
  • [14] A multi-scale constitutive model for AlSi10Mg alloy fabricated via laser powder bed fusion
    Lei, Mingqi
    Aditya, Ramesh
    Liu, Lu
    Wu, Mao See
    Wang, Jundong
    Zhou, Kun
    Yao, Yao
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2025, 306
  • [15] Boosting Productivity of Laser Powder Bed Fusion for AlSi10Mg
    Defanti, Silvio
    Cappelletti, Camilla
    Gatto, Andrea
    Tognoli, Emanuele
    Fabbri, Fabrizio
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (05):
  • [16] Influence of powder size on defect generation in laser powder bed fusion of AlSi10Mg alloy
    Chu, Fuzhong
    Li, Erlei
    Shen, Haopeng
    Chen, Zhuoer
    Li, Yixin
    Liu, Hui
    Min, Shiling
    Tian, Xinni
    Zhang, Kai
    Zhou, Zongyan
    Zou, Ruiping
    Hou, Juan
    Wu, Xinhua
    Huang, Aijun
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 183 - 195
  • [17] Role of powder particle size on laser powder bed fusion processability of AlSi10mg alloy
    Balbaa, M. A.
    Ghasemi, A.
    Fereiduni, E.
    Elbestawi, M. A.
    Jadhav, S. D.
    Kruth, J-P
    ADDITIVE MANUFACTURING, 2021, 37
  • [18] Study on AlSi10Mg Alloy with Complex Flow Channels by Laser Powder Bed Fusion
    Zhu Xiaogang
    Dong Anping
    Cheng Lingyu
    Sun Jing
    Liu Zhengwu
    Guo Lijie
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (07)
  • [19] Modeling and Optimization of Process Parameters for Laser Powder Bed Fusion of AlSi10Mg Alloy
    Samantaray M.
    Thatoi D.N.
    Sahoo S.
    Lasers in Manufacturing and Materials Processing, 2019, 6 (4) : 356 - 373
  • [20] Nanoscale periodic gradients generated by laser powder bed fusion of an AlSi10Mg alloy
    Lefebvre, Williams
    Rose, Gregory
    Delroisse, Pauline
    Baustert, Eric
    Cuvilly, Fabien
    Simar, Aude
    MATERIALS & DESIGN, 2021, 197