Continuous hydroxyl radical planar laser imaging at 50 kHz repetition rate

被引:18
|
作者
Hammack, Stephen [1 ]
Carter, Campbell [2 ]
Wuensche, Clemens [3 ]
Lee, Tonghun [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Air Force Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA
[3] Sirah Lasertech GmbH, D-41516 Grevenbroich, Germany
基金
美国国家科学基金会;
关键词
INDUCED FLUORESCENCE; TURBULENT FLAMES; DIFFUSION FLAME; OH; DYNAMICS; IMAGES;
D O I
10.1364/AO.53.005246
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study demonstrates high-repetition-rate planar laser-induced fluorescence (PLIF) imaging of hydroxyl radicals (OH) in flames at a continuous framing rate of 50 kHz. A frequency-doubled dye laser is pumped by the second harmonic of an Nd:YAG laser to generate laser radiation near 283 nm with a pulse width of 8 ns and rate of 50 kHz. Fluorescence is recorded by a two-stage image intensifier and complementary metal-oxide-semiconductor camera. The average power of the 283 nm beam reaches 7W, yielding a pulse energy of 140 mu J. Both a Hencken burner and a DC transient-arc plasmatron are used to produce premixed CH4/air flames to evaluate the OH PLIF system. The average signal-to-noise ratio for the Hencken burner flame is greater than 20 near the flame front and greater than 10 further downstream in a region of the flame near equilibrium. Image sequences of the DC plasmatron discharge clearly illustrate development and evolution of flow features with signal levels comparable to those in the Hencken burner. The results are a demonstration of the ability to make high-fidelity OH PLIF measurements at 50 kHz using a Nd: YAG-pumped, frequency-doubled dye laser. (C) 2014 Optical Society of America
引用
收藏
页码:5246 / 5251
页数:6
相关论文
共 50 条
  • [21] A review of recent progress on laser-plasma acceleration at kHz repetition rate
    Faure, J.
    Gustas, D.
    Guenot, D.
    Vernier, A.
    Bohle, F.
    Ouille, M.
    Haessler, S.
    Lopez-Martens, R.
    Lifschitz, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)
  • [22] Evolvement of filamentation of femtosecond laser pulses of a kHz repetition rate propagating in Air
    Duan, ZL
    Chen, JP
    Fang, ZB
    Wang, XT
    Li, RX
    Lin, LH
    Xu, ZZ
    ACTA PHYSICA SINICA, 2004, 53 (02) : 473 - 477
  • [23] Efficient, kHz repetition rate, gain-switched Cr:forsterite laser
    J.C. Diettrich
    I.T. McKinnie
    D.M. Warrington
    Applied Physics B , 1999, 69 : 203 - 206
  • [24] Linewidth of a high pulse repetition rate (∼20 kHz) class dye laser
    Mishra, G. K.
    Kumar, Abhay
    Prakash, O.
    Biswal, R.
    Dixit, S. K.
    Nakhe, S. V.
    LASER PHYSICS, 2016, 26 (01)
  • [25] 1.1 J Yb:YAG Picosecond Laser at 1 kHz Repetition Rate
    Wang, Yong
    Chi, Han
    Baumgarten, Cory
    Dehne, Kristian
    Meadows, Alexander R.
    Davenport, Aaron
    Murray, Gabe
    Reagan, Brendan A.
    Menoni, Carmen S.
    Rocca, Jorge J.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [26] THE RISE IN THE XECL LASER-PULSE REPETITION RATE UP TO 1 KHZ
    BARANOV, VY
    BORISOV, VM
    VINOKHODOV, AY
    VYSIKAILO, FI
    KIRYUKHIN, YB
    KVANTOVAYA ELEKTRONIKA, 1984, 11 (04): : 827 - 829
  • [27] Demonstration of a kHz-repetition-rate extreme ultraviolet laser at 41.8 nm
    Tissandier, F.
    Jurkovicova, L.
    Gautier, J.
    Stanek, M.
    Finke, O.
    Albrecht, M.
    Nejdl, J.
    Hort, O.
    Sebban, S.
    OPTICS LETTERS, 2024, 49 (21) : 6321 - 6324
  • [28] 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate
    Wang, Yong
    Chi, Han
    Baumgarten, Cory
    Dehne, Kristian
    Meadows, Alexander R.
    Davenport, Aaron
    Murray, Gabe
    Reagan, Brendan A.
    Menoni, Carmen S.
    Rocca, Jorge J.
    OPTICS LETTERS, 2020, 45 (24) : 6615 - 6618
  • [29] Realtime DIAL measurement using 1 kHz repetition rate tunable laser
    Maruyama, Y
    Kato, M
    Ohzu, A
    OPTICAL PULSE AND BEAM PROPAGATION III, 2001, 4271 : 335 - 338
  • [30] Copper bromide vapour laser with a pulse repetition rate up to 700 kHz
    Nekhoroshev, V. O.
    Fedorov, V. F.
    Evtushenko, G. S.
    Torgaev, S. N.
    QUANTUM ELECTRONICS, 2012, 42 (10) : 877 - 879